883 resultados para Glucose in blood
Resumo:
Polymerase chain reaction (PCR) is now recognized as a sensitive and specific method for detecting Plasmodium species in blood. In this Study. we tested 279 blood samples, from patients with Suspected malaria, by a PCR assay utilizing species-specific colorimetric detection. and compared the results to light microscopy. Overall, both assays were in agreement for 270 of the 279 specimens. P. vivax was detected in 131 (47.0%) specimens. P. falciparum in 64 (22.9%) specimens, P. ovale in 6 (2.1%) specimens, and P. malariae in 5 (1.8%) specimens. Both P. falciparum and P. vivax were detected in a further 10 (3.6%) specimens, and 54 (19.3%) specimens were negative by both assays. In the remaining nine specimens, microscopy either failed to detect the parasite or incorrectly identified the species present. In summary, the sensitivity, specificity and simplicity of the PCR assay makes it particularly suitable for use in a diagnostic laboratory. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
PURPOSE. To investigate in parallel the systemic glutathione levels of patients suffering from primary open angle glaucoma (POAG) or normal tension glaucoma (NTG) with comparable functional loss. METHODS. Thirty-four POAG patients, 30 NTG patients, and 53 controls were subjected to blood analysis to detect the level of circulating glutathione in its reduced (GSH) and oxidized (GSSG) forms. Systemic blood pressure (BP) and ocular perfusion pressure (OPP) parameters were also determined. RESULTS. Independent of age, POAG and NTG patients demonstrated significantly lower GSH and t-GSH levels than age-matched controls (P < 0.001). Additionally, a lower redox index was found, but in POAG patients only, in comparison to both NTG and control groups (P = 0.020). GSSG levels were, however, similar between all study groups (P > 0.05). CONCLUSIONS. This study demonstrates, for the first time, that both POAG and NTG patients exhibit lower GSH and t-GSH levels than age-matched controls, indicating a similar general compromise of the antioxidant defense systems may exist in both conditions. © 2013 The Association for Research in Vision and Ophthalmology, Inc.
Resumo:
The effects of lipoic acid and dihydrolipoic acid were explored on total thiol maintenance in diabetic and non-diabetic human erythrocytes in vitro over 22 hr in a 37°C incubation system with no added glucose. Over 18-22.5 hr after treatment in both non-diabetic and diabetic cells, lipoic acid (1 mM) was associated with greater loss of cellular thiols than dihydrolipoic acid (1 mM), compared to respective control values. At 0.1 mM, in non-diabetic cells, although lipoic acid-treated cells' thiol levels were significantly lower than control, there was no significant difference between dihydrolipoic acid-treated cells and control cells regarding thiol levels. In addition, at 0.1 mM, dihydrolipoic acid-treated diabetic cells showed a reduction in thiol levels compared to control. At 0.01 mM, lipoic acid-treated cells had significantly lower measured thiol levels compared with diabetic cells exposed to dihydrolipoic acid, whereas in non-diabetic cells, dihydrolipoic acid-treated erythrocytic thiol levels were significantly greater than those treated with lipoic acid, although there were no other significant differences between the groups. At 22.5 hr, control values of methaemoglobin rose to 6.4 ± 1.1% in diabetic cells and 3.6 ± 2.1% in non-diabetic cells. Lipoic acid (1 mM) showed greater methaemoglobin formation in diabetic rather than non-diabetic cells (13.6 ± 1.5% versus 11.6 ± 1.5%), whereas dihydrolipoic acid-treated diabetic and non-diabetic cells were less potent in methaemoglobin generation (8.5 ± 2.4% and 8.4 ± 1.4%, respectively). These studies suggest that in certain circumstances such as hypoglycaemia, lipoic acid administration may actually be detrimental to cellular oxidant protection status. © 2006 The Authors.
Resumo:
In the field of postmortem toxicology, principles from pharmacology and toxicology are combined in order to determine if exogenous substances contributed to ones death. In order to make this determination postmortem and (whenever available) antemortem blood samples may be analyzed. This project focused on evaluating the relationship between postmortem and antemortem blood drug levels, in order to better define an interpretive framework for postmortem toxicology. To do this, it was imperative to evaluate the differences in antemortem and postmortem drug concentrations, determine the role microbial activity and evaluate drug stability. Microbial studies determined that the bacteria Escherichia coli and Pseudomonas aeruginosa could use the carbon structures of drugs as a source of food. This would suggest prior to sample collection, microbial activity could potentially affect drug levels. This process however would stop before toxicologic evaluation, as at autopsy blood samples are stored in tubes containing the antimicrobial agent sodium fluoride. Analysis of preserved blood determined that under the current storage conditions sodium fluoride effectively inhibited microbial growth. Nonetheless, in many instances inconsistent drug concentrations were identified. When comparing antemortem to postmortem results, diphenhydramine, morphine, codeine and methadone, all showed significantly increased postmortem drug levels. In many instances, increased postmortem concentrations correlated with extended postmortem intervals. Other drugs, such as alprazolam, were likely to have concentration discrepancies when short antemortem to death intervals were coupled with extended postmortem intervals. While still others, such as midazolam followed the expected pattern of metabolism and elimination, which often resulted in decreased postmortem concentrations. The importance of drug stability was displayed when reviewing the clonazepam/ 7-aminoclonazepam data, as the parent drug commonly converted to its metabolite even when stored in the presence of a preservative. In instances of decreasing postmortem drug concentrations the effect of refrigerated storage could not be ruled out. A stability experiment, which contained codeine, produced data that indicated concentrations could continue to decline under the current storage conditions. The cumulative data gathered for this experiment was used to identify concentration trends, which subsequently aided in the development of interpretive considerations for the specific analytes examined in the study.
Resumo:
Docosahexaenoic (DHA) and arachidonic acids (AA) are polyunsaturated fatty acids (PUFAs), major components of brain tissue and neural systems, and the precursors of a number of biologically active metabolites with functions in inflammation resolution, neuroprotection and other actions. As PUFAs are highly susceptible to peroxidation, we hypothesised whether cigarette smokers would present altered PUFAs levels in plasma and erythrocyte phospholipids. Adult males from Indian, Sri-Lankan or Bangladeshi genetic backgrounds who reported smoking between 20 and 60 cigarettes per week were recruited. The control group consisted of matched non-smokers. A blood sample was taken, plasma and erythrocyte total lipids were extracted, phospholipids were separated by thin layer chromatography, and the fatty acid content analysed by gas chromatography. In smokers, dihomo-gamma-linolenic acid, the AA precursor, was significantly reduced in plasma and erythrocyte phosphatidylcholine. AA and DHA were significantly reduced in erythrocyte sphingomyelin. Relatively short term smoking has affected the fatty acid composition of plasma and erythrocyte phospholipids with functions in neural tissue composition, cell signalling, cell growth, intracellular trafficking, neuroprotection and inflammation, in a relatively young population. As lipid peroxidation is pivotal in the pathogenesis of atherosclerosis and neurodegenerative diseases such as Alzheimer disease, early effects of smoking may be relevant for the development of such conditions.
Resumo:
In Sudanese women with (n = 60) and without (n = 65) pre-eclampsia, circulating lipids, plasma and red cell saturated and monounsaturated fatty (MUFA) acids and dimethyl acetals (DMAs) were investigated. DMAs are an indirect marker of levels of plasmalogens, endogenous antioxidants, which play a critical role in oxidative protection, and cholesterol homeostasis. The pre-eclamptics had higher C18:1n-9 (p < 0.001) and ΣMUFA (p < 0.01) in plasma free fatty acids, C16:1n-7, C18:1n-9, ΣMUFA; 16:0/16:1n-7 (p < 0.01) in erythrocyte choline phosphoglycerides (ePC) and 16:1n-7, 18:1n-7 and 16:0/16:1n-7 (p < 0.01) in erythrocyte ethanolamine phosphoglycerides (ePE). In contrast, the DMAs 18:0, 18:1 and ΣDMAs in ePE, and 16:0, 18:0 and ΣDMAs in ePC were reduced (p < 0.001) in the pre-eclamptic women. This study of pregnant women with high carbohydrate and low fat background diet suggests pre-eclampsia is associated with oxidative stress and enhanced activity of the microsomal enzyme stearyl-CoA desaturase (delta 9 desaturase), as assessed by palmitic/palmitoleic (C16:0/C16:n-1) and stearic/oleic (C18/C18:1n-9) ratios.