931 resultados para Glucose Uptake
Resumo:
The aim of this study was to investigate the chronic effects of palmitate on fatty acid (FA) oxidation, AMPK/ACC phosphorylation/activation, intracellular lipid accumulation, and the molecular Mechanisms involved in these processes in skeletal muscle cells. Exposure of L6 myotubes for 8 h to 200, 400, 600, and 800 mu M of palmitate did rot affect cel viability but significantly reduced FA oxidation by similar to 26.5%, similar to 43.5%, similar to 50%, and similar to 47%, respectively. Interestingly, this occurred despite significant increases in AMPK (similar to 2.5-fold) and ACC (similar to 3-fold) phosphorylation and in malonyl-CoA decarboxylase activity (similar to 38-60%). Low concentrations of palmitate (50-100 mu M) caused an increase (similar to 30%) in CPT-I activity. However, as the concentration of palmitate increased, CPT-I activity decreased by similar to 32% after exposure for 8 h to 800 mu M of palmitate. Although FA uptake was reduced (similar to 35%) in cells exposed to increasing, palmitate concentrations, intracellular lipid accumulation increased in a dose-dependent manner, reaching values similar to 2.3-, similar to 3-, and 4-fold higher than control in muscle cells exposed to 400, 600, and 800 mu M palmitate, respectively. Interestingly, myotubes exposed to 400 mu M of palmitate for 1h increased basal glucose uptake and glycogen synthesis by similar to 40%. However, as time of incubation in the presence of palmitate progressed from 1 to 8h, these increases were abolished and a time-dependent inhibition of insulin-stimulated glucose uptake (similar to 65%) and glycogen synthesis (30%) was observed in myotubes. These findings may help explain the dysfunctional adaptations that occur in glucose and FA Metabolism in skeletal muscle under conditions of chronically elevated circulating levels of non-esterified FAs. Such as in obesity and Type 2 Diabetes.
Resumo:
Aim: Glimepiride, a low-potency insulin secretagogue, is as efficient on glycaemic control as other sulphonylureas, suggesting an additional insulin-sensitizer role. The aim of the present study was to confirm the insulin-sensitizer role of glimepiride and to show extra-pancreatic effects of the drug. Methods: Three-month-old monosodium glutamate (MSG)-induced obese insulin-resistant rats were treated (OG) or not treated (O) with glimepiride for 4 weeks and compared with age-matched non-obese rats (C). Insulin sensitivity in whole body, glucose transporter 4 (GLUT4) protein content, glucose uptake and glycogen synthesis in oxidative skeletal muscle and phospho-glycogen synthase kinase (p-GSK3) and glycogen content in liver were analysed. Results: Insulin sensitivity, analysed by the insulin tolerance test, was 30% lower in O than in C rats (p < 0.05), and OG rats recovered this parameter (p < 0.05). In oxidative muscle, glimepiride increased the GLUT4 protein content (50%, p < 0.001) and recovered the obesity-induced reduction (similar to 20%) of the in vitro insulin-stimulated glucose uptake and incorporation into glycogen. In liver, glimepiride increased p-GSK3 (p < 0.01) and glycogen (p < 0.05) contents. Conclusion: The increased GLUT4 protein expression and glucose utilization in oxidative muscle and the increased insulin sensitivity and glycogen storage in liver evidence the insulin-sensitizer effect of glimepiride, which must be important to enable the glimepiride drug to promote an efficient glycaemic control.
Resumo:
Metabolic Syndrome is a group of conditions related to obesity and physical inactivity. Little is known about the role of physical inactivity, in early stages of development, in the susceptibility to insulin resistant phenotype induced by high fat diet. Akt plays a key role in protein synthesis and glucose transport in skeletal muscle and has been regulated by muscle activity. The objective of present study was to determine the effect of early physical inactivity on muscle growth and susceptibility to acquire a diabetic phenotype and to assess its relationship with Akt expression. Forty Wistar male rats were distributed in two groups (standard group, Std) and movement restriction (RM). Between days 23 and 70 after birth, RM group was kept in small cages that did not allow them to perform relevant motor activity. From day 71 to 102 after birth, 10 rats of each group were fed with hyperlipidic diet (groups Std-DAG and RM-DAG). No differences were observed in total body weight although DAG increased epididymal fat pad weight. RM decreased significantly the soleus weight. Insulin-mediated glucose uptake was lower in RM-DAG group. Akt protein levels were lower in RM groups. Real time RT-PCR analysis showed that movement restriction decreased mRNA levels of AKT1 in soleus muscle, regardless of supplied diet. These findings suggest that early physical inactivity limits muscle`s growth and contributes to instauration of insulin resistant phenotype, which can be partly explained by dysregulation of Akt expression.
Resumo:
Glycogen content of white and red skeletal muscles, cardiac muscle, and liver was investigated in conditions where changes in plasma levels of non-esterified fatty acids (NEFA) occur. The experiments were performed in fed and 12 and 48 h-fasted rats. The animals were also submitted to swimming for 10 and 30 min. Glycogen content was also investigated in both pharmacologically induced low plasma NEFA levels fasted rats and pharmacologically induced high plasma NEFA levels fed rats. The participation of Akt and glycogen synthase kinase-3 (GSK-3) in the changes observed was investigated. Plasma levels of NEFA, glucose, and insulin were determined in all conditions. Fasting increased plasma NEFA levels and reduced glycogen content in the liver and skeletal muscles. However, an increase of glycogen content was observed in the heart under this condition. Akt and GSK-3 phosphorylation was reduced during fasting in the liver and skeletal muscles but it remained unchanged in the heart. Our results suggest that in conditions of increased plasma NEFA levels, changes in insulin-stimulated phosphorylation of Akt and GSK-3 and glycogen content vary differently in liver, skeletal muscles, and heart. Akt and GSK-3 phosphorylation and glycogen content are decreased in liver and skeletal Muscles, but in the heart it remain unchanged (Akt and GSK-3 phosphorylation) or increased (glycogen content) due to consistent increase of plasma NEFA levels. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Besides the effects on peripheral energy homeostasis, insulin also has an important role in ovarian function. Obesity has a negative effect on fertility, and may play a role in the development of the polycystic ovary syndrome in susceptible women. Since insulin resistance in the ovary could contribute to the impairment of reproductive function in obese women, we evaluated insulin signaling in the ovary of high-fat diet-induced obese rats. Female Wistar rats were submitted to a high-fat diet for 120 or 180 days, and the insulin signaling pathway in the ovary was evaluated by immunoprecipitation and immunoblotting. At the end of the diet period, we observed insulin resistance, hyperinsulinemia, an increase in progesterone serum levels, an extended estrus cycle, and altered ovarian morphology in obese female rats. Moreover, in female obese rats treated for 120 days with the high-fat diet, the increase in progesterone levels occurred together with enhancement of LH levels. The ovary from high-fat-fed female rats showed a reduction in the insulin receptor substrate/phosphatidylinositol 3-kinase/AKT intracellular pathway, associated with an increase in FOXO3a, IL1B, and TNF alpha protein expression. These changes in the insulin signaling pathway may have a role in the infertile state associated with obesity. Journal of Endocrinology (2010) 206, 65-74
Resumo:
Reaction of VOCl(2) with 2-pyridineformamide thiosemicarbazone (H2Am4DH) and its N(4)-methyl (H2Am4Me), N(4)-ethyl (H2Am4Et) and N(4)-phenyl (H2Am4Ph) derivatives in ethanol gave as products [VO(H2Am4DH) Cl(2)] (1), [VO(H2Am4Me) Cl(2)] center dot 1/2HCl (2), [VO(H2Am4Et) Cl(2)] center dot HCl (3) and [VO(2Am4Ph) Cl] (4). Upon the dissolution of 1-4 in water, oxidation immediately occurs with the formation of [VO(2)(2Am4DH)] (5), [VO(2)(2Am4Me)] (6), [VO(2)(2Am4Et)] (7) and [VO(2)(2Am4Ph)] (8). The crystal and molecular structures of 5 and 6 were determined. Complexes 5-8 inhibited glycerol release in a similar way to that observed with insulin but showed a low enhancing effect on glucose uptake by rat adipocytes. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We have demonstrated previously that the complex bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl)pyridine-N,N`]copper(II), named [Cu(isaepy)(2)], induces AMPK (AMP-activated protein kinase)-dependent/p53-mediated apoptosis in tumour cells by targeting mitochondria. In the present study, we found that p38(MAPK) (p38 mitogen-activated protein kinase) is the molecular link in the phosphorylation cascade connecting AMPK to p53. Transfection of SH-SY5Y cells with a dominant-negative mutant of AMPK resulted in a decrease in apoptosis and a significant reduction in phospho-active p38(MAPK) and p53. Similarly, reverse genetics of p38(MAPK) yielded a reduction in p53 and a decrease in the extent of apoptosis, confirming an exclusive hierarchy of activation that proceeds via AMPK/p38(MAPK)/p53. Fuel supplies counteracted [Cu(isaepy)(2)]-induced apoptosis and AMPK/p38(MAPK)/p53 activation, with glucose being the most effective, suggesting a role for energetic imbalance in [Cu(isaepy)(2)] toxicity. Co-administration of 3BrPA (3-bromopyruvate), a well-known inhibitor of glycolysis, and succinate dehydrogenase, enhanced apoptosis and AMPK/p38(MAPK)/p53 signalling pathway activation. Under these conditions, no toxic effect was observed in SOD (superoxide dismutase)-overexpressing SH-SY5Y cells or in PCNs (primary cortical neurons), which are, conversely, sensitized to the combined treatment with [Cu(isaepy)(2)] and 3BrPA only if grown in low-glucose medium or incubated with the glucose-6-phosphate dehydrogenase inhibitor dehydroepiandrosterone. Overall, the results suggest that NADPH deriving from the pentose phosphate pathway contributes to PCN resistance to [Cu(isaepy)(2)] toxicity and propose its employment in combination with 3BrPA as possible tool for cancer treatment.
Resumo:
Reaction of 2-acetylpyridine semicarbazone (H2APS), 3-acetylpyridine semicarbazone (H3APS) and 4-acetylpyridine semicarbazone (H4APS) with [VO(acac)(2)] (acac = acetylacetonate) gave [VO(H2APS)(acac)(2)] (1), (VO(H3APS)(acac)(2)] (2) and [VO(4APS)(acac) (H2O)] center dot 1/2H(2)O (3). Oxidation of complex 1 in acetonitrile gave [VO2(2APS)] (4). The crystal structures of complexes 1 and 4 have been determined. Complexes 1-3 were able to enhance glucose uptake and to inhibit glycerol release from adipocytes, which indicate their potential to act as insulin-mimics. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The Epidermoid Carcinoma (EC) is the most common lesions located in the region of the head and neck and, despite advances in treatment modalities, the prognosis is still poor. The malignant cells show an increase in glucose uptake, process mediated by glucose transporters (GLUTs). Increased expression of GLUT 1 and GLUT 3 is related to the aggressive behavior of this lesion. The aim of this study was to evaluate, through immunohistochemistry, the expression of GLUTs 1 and 3 in EC of the lower lip. The sample consisted of 40 cases of EC of the lower lip, of which 20 had regional lymph node metastasis and the remaining 20 with absence of metastasis. The percentages of immunostained cells in front of tumor invasion and in the center of tumor were evaluated. These results were related to the presence and absence of lymph node metastasis, TNM classification and histological grading. The percentage of cytoplasmic/membranous expression of GLUT 1 ranged from 77.35% to 100%, while for GLUT 3 this value ranged from 0.79% to 100%. As for nuclear staining for GLUT 1, this percentage ranged from 0 to 0.42%, however. GLUT 3 showed only one case with nuclear staining. Despite the significant expression of tumor cells related to the proteins studied, we observed no statistically significant relationship between the variables and the antibodies analyzed, regardless of the region evaluated. However, there was a moderate positive correlation between cytoplasmic/membranous immunoexpressions of GLUT 1 in invasion front and in the tumor center (r = 0.679, p <0.001). Similarly, moderate positive correlation was found between the nuclear immunoexpressions of GLUT 1 in the invasion front and in the tumor center (r = 0.547, p <0.001). For GLUT 3, was also observed a moderate statistically significant positive correlation between cytoplasmic/membranous expression in tumor invasion front and in tumor center (r = 0.589, p <0.001). We also observed that the immunoreactivity for GLUT 1 was higher than GLUT 3 expression in invasion front (p <0.001) and tumor center (p <0.001). From these results, this study suggests that tumor hypoxia is a remarkable characteristic of the EC of the lower lip and GLUT 1 may be primarily responsible for glucose uptake into the interior of the malignant cells
Resumo:
Water contaminants have a high potential risk for the health of populations. Protection from toxic effects of environmental water pollutants primarily involves considering the mechanism of low level toxicity and likely biological effects in organisms who live in these polluted waters. The biomarkers assessment of oxidative stress and metabolic alterations to cadmium exposure were evaluated in Nile tilapia, Oreochromis niloticus. The fish were exposed to 0.35, 0.75, 1.5, and 3.0 mg/l concentrations of Cd2+ (CdCl2) in water for 60 days. Fish that survived cadmium exposure showed a metabolic shift and a compensatory development for maintenance of the body weight gain. We observed a decreased glycogen content and decreased glucose uptake in white muscle. Lactate dehydrogenase (LDH) and creatine phosphokinase (CK) activities were also decreased, indicating that the glycolytic capacity was decreased in this tissue. No alterations were observed in total protein content in white muscle due to cadmium exposure suggesting a metabolic shift of carbohydrate metabolism to maintenance of the muscle protein reserve. There was an increase in glucose uptake, CK increased activity, and a clear increase of LDH activity in red muscle of fish with cadmium exposure. Since no alterations were observed in lipoperoxide concentration, while antioxidant enzymes glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were changed in the liver and the red and white muscle of fish with cadmium exposure, we can conclude that oxygen free radicals are produced as a mediator of cadmium toxicity. Resistance development is related with increased activities of antioxidant enzymes, which were important in the protection against cadmium damage, inhibiting lipoperoxide formation. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Physical exercises have been recommended in the prevention of non-insulin dependent diabetes mellitus (NIDDM), but the mechanisms involved in this intervention are not yet fully understood. Experimental models offer the opportunity for the study of this matter. The present study was designed to analyze the diabetes evolution in rats submitted to neonatal treatment with alloxan with the objective of verifying the suitability of the model to future studies with exercises. For this, newly born rats (6 days old) received intraperitoneal alloxan (A = 200 mg/kg of body weight). Rats injected with vehicle (citrate buffer) were used as controls (C). The fasting blood glucose level (mg/dL) was higher in the alloxan group at the day 28 (C=47.25 +/- 5.08; A=54.51 +/- 7.03) but not at the 60 day of age (C=69.18 +/- 8.31; A=66.81 +/- 6.08). The alloxan group presented higher blood glucose level during glucose tolerance test (GTT) (mg/dL. 120 min) in relation to the control group both at day 28 (C=16908.9 +/- 1078.8; A=21737,7 +/- 1106.4) and at day 60 (C=11463.45 +/- 655.30; A=15282.21 +/- 1221.84). Insulinaemia during GTT (ng/mL.120 min) was lower at day 28 (C=158.67 +/- 33.34; A=123.90 +/- 19.80), but presented no difference at day 60 (C=118.83 +/- 26.02; A=97.8 +/- 10.88). At day 60, the glycogen concentration in the soleus muscle (mg/100mg) was lower in the alloxan group (0.3 +/- 0.13) in relation to the control group (0.5 +/- 0.07). No difference was observed between groups in relation to (mu mol/g.h): Glucose Uptake (C = 5.8 +/- 0.63; A = 5.2 +/- 0.73); Glucose Oxidation (C= 4.3 +/- 1.13; A= 3.9 +/- 0.44); Glycogen Synthesis (C= 0.8 +/- 0.18; A= 0.7 +/- 0.18) and Lactate Production (C= 3.8 +/- 0.8; A= 3.8 0.7) by the isolated soleus muscle. The glucose-stimulated insulin secretion (16.7mM) by the isolated islets (ng/5 islets. h) of the alloxan group was lower (14.3 +/- 4.7) than the control group (32.0 +/- 7.9). Thus, we may conclude that this neonatal diabetes induction model gathers interesting characteristics and may be useful for further studies on the role of the exercise in the diabetes mellitus appearance.
Resumo:
O presente estudo visou avaliar a ingestão alimentar, ganho de peso e metabolismo muscular da glicose em ratos submetidos ao treinamento aeróbio durante recuperação de desnutrição protéica. Para isso, 60 ratos da linhagem Wistar, machos, foram separados nos grupos normoprotéico (NP) e hipoprotéico (HP), de acordo com a dieta NP (17% de proteína) ou HP (6% de proteína), respectivamente, recebida do desmame (21 dias) aos 90 dias de idade. Todos os animais passaram então, a receber a dieta NP e foram submetidos (treinado TRE) ou não (sedentário - SED) ao treinamento físico, que consistiu de corrida em esteira rolante, 25m/min, 50 minutos ao dia, cinco dias na semana, durante 30 dias, compondo os grupos NP-SED, NP-TRE, HP/NP-SED e HP/NP-TRE. Foi avaliado o metabolismo da glicose em fatias de músculo sóleo incubado em presença de insulina (100miU/L) e glicose (5,5mM, contendo [C14] glicose e [H³] 2-deoxiglicose). A ingestão alimentar diária (g/100g de peso corporal) do grupo HP/NP-TRE (24,39 ± 4,07) foi maior do que o grupo HP/NP-SED (21,62 ± 4,69). O ganho de peso (g) foi semelhante nos grupos HP/NP-TRE (203,80 ± 34,03) e HP/NP-SED (214,43 ± 30,54). Não houve diferença entre estes dois grupos quanto aos parâmetros: captação de glicose, oxidação de glicose e síntese de glicogênio pelo músculo sóleo. Desse modo, pudemos concluir que o treinamento aeróbio não teve impacto sobre a recuperação nutricional, visto que não houve diferenças metabólicas ou somáticas entre animais recuperados em presença ou ausência do treinamento.
Resumo:
In recent decades, metabolic syndrome has become a public health problem throughout the world. Longitudinal studies in humans have several limitations due to the invasive nature of certain analyses and the size and randomness of the study populations. Thus, animal models that are able to mimic human physiological responses could aid in investigating metabolic disease. Thus, the present study was designed to analyze metabolic syndrome markers in albino Wistar rats (Rattus norvegicus) of different ages. The following parameters were assessed at two (young), four (adult), six (adult), and twelve (mature) months of age: glucose tolerance (glucose tolerance test); insulin sensitivity (insulin tolerance test); fasting serum glucose, triglycerides, total cholesterol, HDL cholestero, and LDL cholesterol concentrations; glucose uptake in isolated soleus muscle; and total lipid concentration in subcutaneous, mesenteric, and retroperitoneal adipose tissue. We found that aging triggered signs of metabolic syndrome in Wistar rats. For example, mature rats showed a significant increase in body weight that was associated. In addition, mature rats showed an increase in the serum concentration of triglycerides, total cholesterol, and LDL cholesterol, which is characteristic of dyslipidemia. There was also an increase in serum glucose compared with the younger groups of animals. Therefore, aging Wistar rats appear to be an interesting model to study the changes related to metabolic syndrome.
Resumo:
Estudos têm demonstrado que o exercício físico regular melhora as condições do diabetes, facilitando a captação periférica da glicose e o metabolismo de glicogênio, proteínas, etc. Por outro lado, pouco se conhece sobre os efeitos do exercício intenso em diabéticos, principalmente com relação ao sistema imune desses organismos. O presente estudo teve como objetivo verificar os efeitos de um treinamento físico de alta intensidade sobre a contagem total e diferencial de leucócitos em ratos diabéticos. Ratos machos jovens Wistar foram distribuídos em quatro grupos: controle sedentário (CS), controle treinado (CT), diabético sedentário (DS) e diabético treinado (DT). O diabetes foi induzido por aloxana (35mg/kg de peso corporal). Durante seis semanas os animais dos grupos CT e DT realizaram um protocolo de treinamento físico, que consistiu na realização de quatro séries de 10 saltos (intercaladas por um minuto de intervalo) em piscina, com o nível da água correspondendo a 150% do comprimento corporal e sobrecarga equivalente a 50% da massa corporal dos animais. Ao final do período experimental, amostras de sangue foram coletadas para a contagem total e diferencial dos leucócitos. Os resultados foram avaliados estatisticamente por ANOVA com um nível de significância de 5%. A glicemia foi aumentada entre os diabéticos e a insulinemia diminuída. Não foram observadas diferenças significativas na contagem diferencial dos linfócitos, neutrófilos, eosinófilos e contagem total de leucócitos entre os grupos estudados. Houve aumento dos monócitos entre os treinados (CS = 10,0 ± 4,5, CT* = 25,4 ± 7,9, DS = 19,75 ± 7,4, DT* = 25,8 ± 4,4%). O peso relativo do timo foi reduzido pelo treinamento e pelo diabetes (CS = 125,0 ± 37,7, CT* = 74,6 ± 8,2, DS* = 47,5 ± 12,2, DT* = 40,1 ± 16,9mg/100g). Esses resultados permitem concluir que o treinamento físico de alta intensidade não alterou o estado geral do diabetes, mas aumentou os monócitos, o que pode representar um efeito positivo sobre a resposta imunológica desses animais.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)