867 resultados para Geometry of Fuzzy sets
Resumo:
Previously the process of finding critical sets in Latin squares has been inside cumbersome by the complexity and number of Latin trades that, must be constructed. In this paper we develop a theory of Latin trades that yields more transparent constructions. We use these Latin trades to find a new class of critical sets for Latin squares which are a product of the Latin square of order 2 with a. back circulant Latin square of odd order.
Resumo:
The study here highlights the potential that analytical methods based on Knowledge Discovery in Databases (KDD) methodologies have to aid both the resolution of unstructured marketing/business problems and the process of scholarly knowledge discovery. The authors present and discuss the application of KDD in these situations prior to the presentation of an analytical method based on fuzzy logic and evolutionary algorithms, developed to analyze marketing databases and uncover relationships among variables. A detailed implementation on a pre-existing data set illustrates the method. © 2012 Published by Elsevier Inc.
Resumo:
* This work was supported by the CNR while the author was visiting the University of Milan.
Resumo:
In this paper a novel method for an application of digital image processing, Edge Detection is developed. The contemporary Fuzzy logic, a key concept of artificial intelligence helps to implement the fuzzy relative pixel value algorithms and helps to find and highlight all the edges associated with an image by checking the relative pixel values and thus provides an algorithm to abridge the concepts of digital image processing and artificial intelligence. Exhaustive scanning of an image using the windowing technique takes place which is subjected to a set of fuzzy conditions for the comparison of pixel values with adjacent pixels to check the pixel magnitude gradient in the window. After the testing of fuzzy conditions the appropriate values are allocated to the pixels in the window under testing to provide an image highlighted with all the associated edges.
Resumo:
2000 Mathematics Subject Classification: 53C42, 53C15.
Resumo:
Let $M$ be a compact, oriented, even dimensional Riemannian manifold and let $S$ be a Clifford bundle over $M$ with Dirac operator $D$. Then \[ \textsc{Atiyah Singer: } \quad \text{Ind } \mathsf{D}= \int_M \hat{\mathcal{A}}(TM)\wedge \text{ch}(\mathcal{V}) \] where $\mathcal{V} =\text{Hom}_{\mathbb{C}l(TM)}(\slashed{\mathsf{S}},S)$. We prove the above statement with the means of the heat kernel of the heat semigroup $e^{-tD^2}$. The first outstanding result is the McKean-Singer theorem that describes the index in terms of the supertrace of the heat kernel. The trace of heat kernel is obtained from local geometric information. Moreover, if we use the asymptotic expansion of the kernel we will see that in the computation of the index only one term matters. The Berezin formula tells us that the supertrace is nothing but the coefficient of the Clifford top part, and at the end, Getzler calculus enables us to find the integral of these top parts in terms of characteristic classes.
Resumo:
Quenched and tempered high-speed steels obtained by powder metallurgy are commonly used in automotive components, such as valve seats of combustion engines. In order to machine these components, tools with high wear resistance and appropriate cutting edge geometry are required. This work aims to investigate the influence of the edge preparation of polycrystalline cubic boron nitride (PCBN) tools on the wear behavior in the orthogonal longitudinal turning of quenched and tempered M2 high-speed steels obtained by powder metallurgy. For this research, PCBN tools with high and low-CBN content have been used. Two different cutting edge geometries with a honed radius were tested: with a ground land (S shape) and without it (E shape). Also, the cutting speed was varied from 100 to 220 m/min. A rigid CNC lathe was used. The results showed that the high-CBN, E-shaped tool presented the longest life for a cutting speed of 100 m/min. High-CBN tools with a ground land and honed edge radius (S shaped) showed edge damage and lower values of the tool’s life. Low-CBN, S-shaped tools showed similar results, but with an inferior performance when compared with tools with high CBN content in both forms of edge preparation.
Resumo:
The classification of minimal sets is a central theme in abstract topological dynamics. Recently this work has been strengthened and extended by consideration of homomorphisms. Background material is presented in Chapter I. Given a flow on a compact Hausdorff space, the action extends naturally to the space of closed subsets, taken with the Hausdorff topology. These hyperspaces are discussed and used to give a new characterization of almost periodic homomorphisms. Regular minimal sets may be described as minimal subsets of enveloping semigroups. Regular homomorphisms are defined in Chapter II by extending this notion to homomorphisms with minimal range. Several characterizations are obtained. In Chapter III, some additional results on homomorphisms are obtained by relativizing enveloping semigroup notions. In Veech's paper on point distal flows, hyperspaces are used to associate an almost one-to-one homomorphism with a given homomorphism of metric minimal sets. In Chapter IV, a non-metric generalization of this construction is studied in detail using the new notion of a highly proximal homomorphism. An abstract characterization is obtained, involving only the abstract properties of homomorphisms. A strengthened version of the Veech Structure Theorem for point distal flows is proved. In Chapter V, the work in the earlier chapters is applied to the study of homomorphisms for which the almost periodic elements of the associated hyperspace are all finite. In the metric case, this is equivalent to having at least one fiber finite. Strong results are obtained by first assuming regularity, and then assuming that the relative proximal relation is closed as well.
Resumo:
A lógica fuzzy admite infinitos valores lógicos intermediários entre o falso e o verdadeiro. Com esse princípio, foi elaborado neste trabalho um sistema baseado em regras fuzzy, que indicam o índice de massa corporal de animais ruminantes com objetivo de obter o melhor momento para o abate. O sistema fuzzy desenvolvido teve como entradas as variáveis massa e altura, e a saída um novo índice de massa corporal, denominado Índice de Massa Corporal Fuzzy (IMC Fuzzy), que poderá servir como um sistema de detecção do momento de abate de bovinos, comparando-os entre si através das variáveis linguísticas )Muito BaixaM, ,BaixaB, ,MédiaM, ,AltaA e Muito AltaM. Para a demonstração e aplicação da utilização deste sistema fuzzy, foi feita uma análise de 147 vacas da raça Nelore, determinando os valores do IMC Fuzzy para cada animal e indicando a situação de massa corpórea de todo o rebanho. A validação realizada do sistema foi baseado em uma análise estatística, utilizando o coeficiente de correlação de Pearson 0,923, representando alta correlação positiva e indicando que o método proposto está adequado. Desta forma, o presente método possibilita a avaliação do rebanho, comparando cada animal do rebanho com seus pares do grupo, fornecendo desta forma um método quantitativo de tomada de decisão para o pecuarista. Também é possível concluir que o presente trabalho estabeleceu um método computacional baseado na lógica fuzzy capaz de imitar parte do raciocínio humano e interpretar o índice de massa corporal de qualquer tipo de espécie bovina e em qualquer região do País.
Resumo:
The thesis is concerned with a number of problems in Combinatorial Set Theory. The Generalized Continuum Hypothesis is assumed. Suppose X and K are non-zero cardinals. By successively identifying K with airwise disjoint sets of power K, a function/: X-*•K can be viewed as a transversal of a pairwise disjoint (X, K)family A . Questions about families of functions in K can thus bethought of as referring to families of transversals of A. We wish to consider generalizations of such questions to almost disjoint families; in particular we are interested in extensions of the following two problems: (i) What is the 'maximum' cardinality of an almost disjoint family of functions each mapping X into K? (ii) Describe the cardinalities of maximal almost disjoint families of functions each mapping X into K. Article in Bulletin of the Australian Mathematical Society 27(03):477 - 479 · June 1983
Resumo:
Aquesta memòria està estructurada en sis capítols amb l'objectiu final de fonamentar i desenvolupar les eines matemàtiques necessàries per a la classificació de conjunts de subconjunts borrosos. El nucli teòric del treball el formen els capítols 3, 4 i 5; els dos primers són dos capítols de caire més general, i l'últim és una aplicació dels anteriors a la classificació dels països de la Unió Europea en funció de determinades característiques borroses. En el capítol 1 s'analitzen les diferents connectives borroses posant una especial atenció en aquells aspectes que en altres capítols tindran una aplicació específica. És per aquest motiu que s'estudien les ordenacions de famílies de t-normes, donada la seva importància en la transitivitat de les relacions borroses. La verificació del principi del terç exclòs és necessària per assegurar que un conjunt significatiu de mesures borroses generalitzades, introduïdes en el capítol 3, siguin reflexives. Estudiem per a quines t-normes es verifica aquesta propietat i introduïm un nou conjunt de t-normes que verifiquen aquest principi. En el capítol 2 es fa un recorregut general per les relacions borroses centrant-nos en l'estudi de la clausura transitiva per a qualsevol t-norma, el càlcul de la qual és en molts casos fonamental per portar a terme el procés de classificació. Al final del capítol s'exposa un procediment pràctic per al càlcul d'una relació borrosa amb l'ajuda d'experts i de sèries estadístiques. El capítol 3 és un monogràfic sobre mesures borroses. El primer objectiu és relacionar les mesures (o distàncies) usualment utilitzades en les aplicacions borroses amb les mesures conjuntistes crisp. Es tracta d'un enfocament diferent del tradicional enfocament geomètric. El principal resultat és la introducció d'una família parametritzada de mesures que verifiquen unes propietats de caràcter conjuntista prou satisfactòries. L'estudi de la verificació del principi del terç exclòs té aquí la seva aplicació sobre la reflexivitat d'aquestes mesures, que són estudiades amb una certa profunditat en alguns casos particulars. El capítol 4 és, d'entrada, un repàs dels principals resultats i mètodes borrosos per a la classificació dels elements d'un mateix conjunt de subconjunts borrosos. És aquí on s'apliquen els resultats sobre les ordenacions de les famílies de t-normes i t-conormes estudiades en el capítol 1. S'introdueix un nou mètode de clusterització, canviant la matriu de la relació borrosa cada vegada que s'obté un nou clúster. Aquest mètode permet homogeneïtzar la metodologia del càlcul de la relació borrosa amb el mètode de clusterització. El capítol 5 tracta sobre l'agrupació d'objectes de diferent naturalesa; és a dir, subconjunts borrosos que pertanyen a diferents conjunts. Aquesta teoria ja ha estat desenvolupada en el cas binari; aquí, el que es presenta és la seva generalització al cas n-ari. Més endavant s'estudien certs aspectes de les projeccions de la relació sobre un cert espai i el recíproc, l'estudi de cilindres de relacions predeterminades. Una aplicació sobre l'agrupació de les comarques gironines en funció de certes variables borroses es presenta al final del capítol. L'últim capítol és eminentment pràctic, ja que s'aplica allò estudiat principalment en els capítols 3 i 4 a la classificació dels països de la Unió Europea en funció de determinades característiques borroses. Per tal de fer previsions per a anys venidors s'han utilitzat sèries temporals i xarxes neuronals. S'han emprat diverses mesures i mètodes de clusterització per tal de poder comparar els diversos dendogrames que resulten del procés de clusterització. Finalment, als annexos es poden consultar les sèries estadístiques utilitzades, la seva extrapolació, els càlculs per a la construcció de les matrius de les relacions borroses, les matrius de mesura i les seves clausures.
Resumo:
Despite the success of studies attempting to integrate remotely sensed data and flood modelling and the need to provide near-real time data routinely on a global scale as well as setting up online data archives, there is to date a lack of spatially and temporally distributed hydraulic parameters to support ongoing efforts in modelling. Therefore, the objective of this project is to provide a global evaluation and benchmark data set of floodplain water stages with uncertainties and assimilation in a large scale flood model using space-borne radar imagery. An algorithm is developed for automated retrieval of water stages with uncertainties from a sequence of radar imagery and data are assimilated in a flood model using the Tewkesbury 2007 flood event as a feasibility study. The retrieval method that we employ is based on possibility theory which is an extension of fuzzy sets and that encompasses probability theory. In our case we first attempt to identify main sources of uncertainty in the retrieval of water stages from radar imagery for which we define physically meaningful ranges of parameter values. Possibilities of values are then computed for each parameter using a triangular ‘membership’ function. This procedure allows the computation of possible values of water stages at maximum flood extents along a river at many different locations. At a later stage in the project these data are then used in assimilation, calibration or validation of a flood model. The application is subsequently extended to a global scale using wide swath radar imagery and a simple global flood forecasting model thereby providing improved river discharge estimates to update the latter.
Resumo:
Pós-graduação em Linguística e Língua Portuguesa - FCLAR