993 resultados para Geography Climate
Resumo:
Forests have a prominent role in carbon storage and sequestration. Anthropogenic forcing has the potential to accelerate climate change and alter the distribution of forests. How forests redistribute spatially and temporally in response to climate change can alter their carbon sequestration potential. The driving question for this research was: How does plant migration from climate change impact vegetation distribution and carbon sequestration potential over continental scales? Large-scale simulation of the equilibrium response of vegetation and carbon from future climate change has shown relatively modest net gains in sequestration potential, but studies of the transient response has been limited to the sub-continent or landscape scale. The transient response depends on fine scale processes such as competition, disturbance, landscape characteristics, dispersal, and other factors, which makes it computational prohibitive at large domain sizes. To address this, this research used an advanced mechanistic model (Ecosystem Demography Model, ED) that is individually based, but pseudo-spatial, that reduces computational intensity while maintaining the fine scale processes that drive the transient response. First, the model was validated against remote sensing data for current plant functional type distribution in northern North America with a current climatology, and then a future climatology was used to predict the potential equilibrium redistribution of vegetation and carbon from future climate change. Next, to enable transient calculations, a method was developed to simulate the spatially explicit process of dispersal in pseudo-spatial modeling frameworks. Finally, the new dispersal sub-model was implemented in the mechanistic ecosystem model, and a model experimental design was designed and completed to estimate the transient response of vegetation and carbon to climate change. The potential equilibrium forest response to future climate change was found to be large, with large gross changes in distribution of plant functional types and comparatively smaller changes in net carbon sequestration potential for the region. However, the transient response was found to be on the order of centuries, and to depend strongly on disturbance rates and dispersal distances. Future work should explore the impact of species-specific disturbance and dispersal rates, landscape fragmentation, and other processes that influence migration rates and have been simulated at the sub-continent scale, but now at continental scales, and explore a range of alternative future climate scenarios as they continue to be developed.
Resumo:
Sea level rise and other effects of climate change on oceans and coasts around the world are major reasons to halt the emissions of greenhouse gases to the maximum extent. But historical emissions and sea level rise have already begun so steps to adapt to a world where shorelines, coastal populations, and economies could be dramatically altered are now essential. This presents significant economic challenges in four areas. (1) Large expenditures for adaptation steps may be required but the extent of sea level rise and thus the expenditures are unknowable at this point. Traditional methods for comparing benefits and costs are severely limited, but decisions must still be made. (2) It is not clear where the funding for adaptation will come from, which is a barrier to even starting planning. (3) The extent of economic vulnerability has been illustrated with assessments of risks to current properties, but these likely significantly understate the risks that lie in the future. (4) Market-based solutions to reducing climate change are now generally accepted, but their role in adaptation is less clear. Reviewing the literature addressing each of these points, this paper suggests specific strategies for dealing with uncertainty in assessing the economics of adaptation options, reviews the wide range of options for funding coastal adaption, identifies a number of serious deficiencies in current economic vulnerability studies, and suggests how market based approaches might be used in shaping adaptation strategies. The paper concludes by identifying a research agenda for the economics of coastal adaptation that, if completed, could significantly increase the likelihood of economically efficient coastal adaptation.
Resumo:
This study examines the self-reported, topic-specific professional knowledge (TSPK) of Danish geography teachers seen as an aspect of their pedagogical content knowledge (PCK) when teaching weather formation and climate change. This topic is considered representative of geography teaching in Denmark. In the last ten years Danish primary and lower-secondary schooling has undergone several significant changes, including the introduction of a final multiple-choice exam in geography in 2007, and a fundamental reconstruction of the curriculum in 2014. These changes are expected to influence the TSPK of geography teachers in ways that potentially have an impact on their classroom practice. Teachers´ responses to specific questions relating to their choice of learning goals and the content and organisation of their lessons show that geography teachers take into account not only the knowledge aspects which point to the final multiple-choice exam, but also the ‘bildung’ perspectives of the subject equipping students to develop their own opinions when dealing with socio-scientific issues (SSI).
Resumo:
The seasonal climate drivers of the carbon cy- cle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combina- tion of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measure- ments and 35 litter productivity measurements), their asso- ciated canopy photosynthetic capacity (enhanced vegetation index, EVI) and climate, we ask how carbon assimilation and aboveground allocation are related to climate seasonal- ity in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positively to precipitation when rain- fall is < 2000 mm yr-1 (water-limited forests) and to radia- tion otherwise (light-limited forests). On the other hand, in- dependent of climate limitations, wood productivity and lit- terfall are driven by seasonal variation in precipitation and evapotranspiration, respectively. Consequently, light-limited forests present an asynchronism between canopy photosyn- thetic capacity and wood productivity. First-order control by precipitation likely indicates a decrease in tropical forest pro- ductivity in a drier climate in water-limited forest, and in cur- rent light-limited forest with future rainfall < 2000 mm yr-1.