945 resultados para Genome Sequence
Resumo:
Pili of pathogenic Neisseria are major virulence factors associated with adhesion, cytotoxicity, twitching motility, autoaggregation, and DNA transformation. Pili are modified posttranslationally by the addition of phosphorylcholine. However, no genes involved in either the biosynthesis or the transfer of phosphorylcholine in Neisseria meningitidis have been identified. In this study, we identified five candidate open reading frames (ORFs) potentially involved in the biosynthesis or transfer of phosphorylcholine to pilin in N. meningitidis. Insertional mutants were constructed for each ORF in N. meningitidis strain C311#3 to determine their effect on phosphorylcholine expression. The effect of the mutant ORFs on the modification by phosphorylcholine was analyzed by Western analysis with phosphorylcholine-specific monoclonal antibody TEPC-15. Analysis of the mutants showed that ORF NMB0415, now defined as pptA (pilin phosphorylcholine transferase A), is involved in the addition of phosphorylcholine to pilin in N. meningitidis. Additionally, the phase variation (high frequency on-off switching of expression) of phosphorylcholine on pilin is due to changes in a homopolymeric guanosine tract in pptA.
Resumo:
Mannans (linear mannan, glucomannan, galactomannan and galactoglucomannan) are the major constituents of the hemicellulose fraction in softwoods and show great importance as a renewable resource for fuel or feedstock applications. As complex polysaccharides, mannans can only be degraded through a synergistic action of different mannan-degrading enzymes, mannanases. Microbial mannanases are mainly extracellular enzymes that can act in wide range of pH and temperature, contributing to pulp and paper, pharmaceutical, food and feed, oil and textile successful industrial applications. Knowing and controlling these microbial mannan-degrading enzymes are essential to take advantage of their great biotechnological potential. The genome of the laboratory 168 strain of Bacillus subtilis carries genes gmuA-G dedicated to the degradation and utilization of glucomannan, including an extracellular -mannanase. Recently, the genome sequence of an undomesticated strain of B. subtilis, BSP1, was determined. In BSP1, the gmuA-G operon is maintained, interestingly, however, a second cluster of genes was found (gam cluster), which comprise a second putative extracellular β-mannanase, and most likely specify a system for the degradation and utilization of a different mannan polymer, galactoglucomannan. The genetic organization and function of the gam cluster, and whether its presence in BSP1 strain results in new hemicellulolytic capabilities, compared to those of the laboratory strain, was address in this work. In silico and in vivo mRNA analyses performed in this study revealed that the gam cluster, comprising nine genes, is organized and expressed in at least six different transcriptional units. Furthermore, cloning, expression, and production of Bbsp2923 in Escherichia coli was achieved and preliminary characterization shows that the enzyme is indeed a β-mannanase. Finally, the high hemicellulolytic capacity of the undomesticated B. subtilis BSP1, demonstrated in this work by qualitative analyses, suggests potential to be used in the food and feed industries.
Resumo:
Genome-scale metabolic models are valuable tools in the metabolic engineering process, based on the ability of these models to integrate diverse sources of data to produce global predictions of organism behavior. At the most basic level, these models require only a genome sequence to construct, and once built, they may be used to predict essential genes, culture conditions, pathway utilization, and the modifications required to enhance a desired organism behavior. In this chapter, we address two key challenges associated with the reconstruction of metabolic models: (a) leveraging existing knowledge of microbiology, biochemistry, and available omics data to produce the best possible model; and (b) applying available tools and data to automate the reconstruction process. We consider these challenges as we progress through the model reconstruction process, beginning with genome assembly, and culminating in the integration of constraints to capture the impact of transcriptional regulation. We divide the reconstruction process into ten distinct steps: (1) genome assembly from sequenced reads; (2) automated structural and functional annotation; (3) phylogenetic tree-based curation of genome annotations; (4) assembly and standardization of biochemistry database; (5) genome-scale metabolic reconstruction; (6) generation of core metabolic model; (7) generation of biomass composition reaction; (8) completion of draft metabolic model; (9) curation of metabolic model; and (10) integration of regulatory constraints. Each of these ten steps is documented in detail.
Resumo:
Dissertação de mestrado em Bioengenharia
Resumo:
Background. Streptococcus gallolyticus is a causative agent of infective endocarditis associated with colon cancer. Genome sequence of strain UCN34 revealed the existence of 3 pilus loci (pil1, pil2, and pil3). Pili are long filamentous structures playing a key role as adhesive organelles in many pathogens. The pil1 locus encodes 2 LPXTG proteins (Gallo2178 and Gallo2179) and 1 sortase C (Gallo2177). Gallo2179 displaying a functional collagen-binding domain was referred to as the adhesin, whereas Gallo2178 was designated as the major pilin. Methods. S. gallolyticus UCN34, Pil1(+) and Pil1(-), expressing various levels of pil1, and recombinant Lactococcus lactis strains, constitutively expressing pil1, were studied. Polyclonal antibodies raised against the putative pilin subunits Gallo2178 and Gallo2179 were used in immunoblotting and immunogold electron microscopy. The role of pil1 was tested in a rat model of endocarditis. Results. We showed that the pil1 locus (gallo2179-78-77) forms an operon differentially expressed among S. gallolyticus strains. Short pilus appendages were identified both on the surface of S. gallolyticus UCN34 and recombinant L. lactis-expressing pil1. We demonstrated that Pil1 pilus is involved in binding to collagen, biofilm formation, and virulence in experimental endocarditis. Conclusions. This study identifies Pil1 as the first virulence factor characterized in S. gallolyticus.
Resumo:
We demonstrate that the cccB gene, identified in the Bacillus subtilis genome sequence project, is the structural gene for a 10-kDa membrane-bound cytochrome c(551) lipoprotein described for the first time in B. subtilis. Apparently, CccB corresponds to cytochrome c(551) of the thermophilic bacterium Bacillus PS3. The heme domain of B. subtilis cytochrome c(551) is very similar to that of cytochrome c(550), a protein encoded by the cccA gene and anchored to the membrane by a single transmembrane polypeptide segment. Thus, B. subtilis contains two small, very similar, c-type cytochromes with different types of membrane anchors. The cccB gene is cotranscribed with the yvjA gene, and transcription is repressed by glucose. Mutants deleted for cccB or yvjA-cccB show no apparent growth, sporulation, or germination defect. YvjA is not required for the synthesis of cytochrome c(551), and its function remains unknown.
Resumo:
Pseudomonas entomophila is an entomopathogenic bacterium that is able to infect and kill Drosophila melanogaster upon ingestion. Its genome sequence suggests that it is a versatile soil bacterium closely related to Pseudomonas putida. The GacS/GacA two-component system plays a key role in P. entomophila pathogenicity, controlling many putative virulence factors and AprA, a secreted protease important to escape the fly immune response. P. entomophila secretes a strong diffusible hemolytic activity. Here, we showed that this activity is linked to the production of a new cyclic lipopeptide containing 14 amino acids and a 3-C(10)OH fatty acid that we called entolysin. Three nonribosomal peptide synthetases (EtlA, EtlB, EtlC) were identified as responsible for entolysin biosynthesis. Two additional components (EtlR, MacAB) are necessary for its production and secretion. The P. entomophila GacS/GacA two-component system regulates entolysin production, and we demonstrated that its functioning requires two small RNAs and two RsmA-like proteins. Finally, entolysin is required for swarming motility, as described for other lipopeptides, but it does not participate in the virulence of P. entomophila for Drosophila. While investigating the physiological role of entolysin, we also uncovered new phenotypes associated with P. entomophila, including strong biocontrol abilities.
Current millennium biotechniques for biomedical research on parasites and host-parasite interactions
Resumo:
The development of biotechnology in the last three decades has generated the feeling that the newest scientific achievements will deliver high standard quality of life through abundance of food and means for successfully combating diseases. Where the new biotechnologies give access to genetic information, there is a common belief that physiological and pathological processes result from subtle modifications of gene expression. Trustfully, modern genetics has produced genetic maps, physical maps and complete nucleotide sequences from 141 viruses, 51 organelles, two eubacteria, one archeon and one eukaryote (Saccharomices cerevisiae). In addition, during the Centennial Commemoration of the Oswaldo Cruz Institute the nearly complete human genome map was proudly announced, whereas the latest Brazilian key stone contribution to science was the publication of the Shillela fastidiosa genomic sequence highlythed on a Nature cover issue. There exists a belief among the populace that further scientific accomplishments will rapidly lead to new drugs and methodological approaches to cure genetic diseases and other incurable ailments. Yet, much evidence has been accumulated, showing that a large information gap exists between the knowledge of genome sequence and our knowledge of genome function. Now that many genome maps are available, people wish to know what are we going to do with them. Certainly, all these scientific accomplishments will shed light on many more secrets of life. Nevertheless, parsimony in the weekly announcements of promising scientific achievements is necessary. We also need many more creative experimental biologists to discover new, as yet un-envisaged biotechnological approaches, and the basic resource needed for carrying out mile stone research necessary for leading us to that "promised land"often proclaimed by the mass media.
Resumo:
Rhinoviruses and enteroviruses are leading causes of respiratory infections. To evaluate genotypic diversity and identify forces shaping picornavirus evolution, we screened persons with respiratory illnesses by using rhinovirus-specific or generic real-time PCR assays. We then sequenced the 5 untranslated region, capsid protein VP1, and protease precursor 3CD regions of virus-positive samples. Subsequent phylogenetic analysis identified the large genotypic diversity of rhinoviruses circulating in humans. We identified and completed the genome sequence of a new enterovirus genotype associated with respiratory symptoms and acute otitis media, confirming the close relationship between rhinoviruses and enteroviruses and the need to detect both viruses in respiratory specimens. Finally, we identified recombinants among circulating rhinoviruses and mapped their recombination sites, thereby demonstrating that rhinoviruses can recombine in their natural host. This study clarifies the diversity and explains the reasons for evolution of these viruses.
Resumo:
The zinc finger motifs (Cys2His2) are found in several proteins playing a role in the regulation of transcripton. SmZF1, a Schistosoma mansoni gene encoding a zinc finger protein was initially isolated from an adult worm cDNA library, as a partial cDNA. The full sequence of the gene was obtained by subcloning and sequencing cDNA and genomic fragments. The collated gene sequence is 2181 nt and the complete cDNA sequence is 705 bp containing the full open reading frame of the gene. Analysis of the genome sequence revealed the presence of three introns interrupting the coding region. The open reading frame theoretically encodes a protein of 164 amino acids, with a calculated molecular mass of 18,667Da. The predicted protein contains three zinc finger motifs, usually present in transcription regulatory proteins. PCR amplification with specific primers for the gene allowed for the detection of the target in egg, cercariae, schistosomulum and adult worm cDNA libraries indicating the expression of the mRNA in these life cycle stages of S. mansoni. This pattern of expression suggests the gene plays a role in vital functions of different life cycle stages of the parasite. Future research will be directed to elucidate the functional role of SmZF1.
Resumo:
Outbreaks of gastroenteritis have occurred among consumers of raw or undercooked shellfish harvested from faecally polluted waters. A multiplex reverse transcription-polymerase chain reaction (RT-PCR) was applied for the simultaneous detection of hepatitis A virus (HAV), poliovirus (PV) and simian rotavirus (RV-SA11) and compared with specific primers for each genome sequence. Three amplified DNA products representing HAV (192 bp), PV (394 bp) and RV (278 bp) were identified when positive controls were used. However, when tested on experimentally contaminated raw oysters, this method was not able to detect the three viruses simultaneously. This is probably due to the low concentration of viral RNAs present in oyster extract which were partially lost during the extracts preparation.
Resumo:
An essential step of the life cycle of retroviruses is the stable insertion of a copy of their DNA genome into the host cell genome, and lentiviruses are no exception. This integration step, catalyzed by the viral-encoded integrase, ensures long-term expression of the viral genes, thus allowing a productive viral replication and rendering retroviral vectors also attractive for the field of gene therapy. At the same time, this ability to integrate into the host genome raises safety concerns regarding the use of retroviral-based gene therapy vectors, due to the genomic locations of integration sites. The availability of the human genome sequence made possible the analysis of the integration site preferences, which revealed to be nonrandom and retrovirus-specific, i.e. all lentiviruses studied so far favor integration in active transcription units, while other retroviruses have a different integration site distribution. Several mechanisms have been proposed that may influence integration targeting, which include (i) chromatin accessibility, (ii) cell cycle effects, and (iii) tethering proteins. Recent data provide evidence that integration site selection can occur via a tethering mechanism, through the recruitment of the lentiviral integrase by the cellular LEDGF/p75 protein, both proteins being the two major players in lentiviral integration targeting.
Resumo:
An effective vaccine against schistosomiasis mansoni would be a valuable control tool and the high levels of protection elicited in rodents and primates by radiation-attenuated cercariae provide proof of principle. A major obstacle to vaccine development is the difficulty of identifying the antigens that mediate protection, not least because of the size of the genome at 280Mb DNA encoding 14,000 to 20,000 genes. The technologies collectively called proteomics, including 2D electrophoresis, liquid chromatography and mass spectrometry, now permit any protein to be identified provided there is extensive DNA data, and preferably a genome sequence. Applied to soluble (cytosolic) proteins from schistosomes, proteomics reveals the great similarity in composition between life cycle stages, with several WHO vaccine candidates amongst the most abundant constituents. The proteomic approach has been successfully applied to identify the secretions used by cercaria to penetrate host skin, the gut secretions of adult worms and the proteins exposed on the tegument surface. Soluble proteins can also be separated by 2D electrophoresis before western blotting to identify the full range of antigenic targets present in a parasite preparation. The next step is to discover which target proteins represent the weak points in the worm's defences.
Resumo:
The ENCyclopedia Of DNA Elements (ENCODE) Project aims to identify all functional elements in the human genome sequence. The pilot phase of the Project is focused on a specified 30 megabases (approximately 1%) of the human genome sequence and is organized as an international consortium of computational and laboratory-based scientists working to develop and apply high-throughput approaches for detecting all sequence elements that confer biological function. The results of this pilot phase will guide future efforts to analyze the entire human genome.
Resumo:
The stable insertion of a copy of their genome into the host cell genome is an essential step of the life cycle of retroviruses. The site of viral DNA integration, mediated by the viral-encoded integrase enzyme, has important consequences for both the virus and the host cell. The analysis of retroviral integration site distribution was facilitated by the availability of the human genome sequence, revealing the non-random feature of integration site selection and identifying different favored and disfavored genomic locations for individual retroviruses. This review will summarize the current knowledge about retroviral differences in their integration site preferences as well as the mechanisms involved in this process.