991 resultados para Genetic Pathways


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heme is an essential cofactor in numerous proteins, but is also cytotoxic. Thus, directed pathways must exist for regulating heme homeostasis. C. elegans is a powerful genetic animal model for elucidating these pathways because it is a heme auxotroph. Worms acquire dietary heme though HRG-1-related importers, and intestinal export was demonstrated to be mediated by the ABC transporter MRP-5. Loss of mrp-5 results in embryonic lethality. Although heme transporters have been identified, there are significant gaps in our understanding for the heme trafficking beyond HRG-1 and MRP-5. To identify additional components, we conducted a forward genetic screen utilizing the null allele mrp-5(ok2067). Screening of 160,000 haploid genomes yielded thirty-two mrp-5(ok2067) suppressor mutants. Deep-sequencing variant analysis revealed three of the suppressors subunits of adapter protein complex 3 (AP-3). We now seek to identify mechanisms for how adaptor protein deficiencies bypass a defect in MRP-5-mediated heme export.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9 degrees 50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (RXAS) and X-ray diffraction (mu XRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe -bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of delta Fe-57 values up to 6 parts per thousand. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings reveal a dynamic range of Fe transformation pathways consistent with a continuum of micro-environments having variable redox conditions. These micro-environments likely support redox cycling of Fe and S and are consistent with culture-dependent and -independent assessments of microbial physiology and genetic diversity of hydrothermal sulfide deposits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

International audience

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poster presented at the From Basic Sciences to Clinical Research - First International Congress of CiiEM. Egas Moniz, Caparica, Portugal, 27-28 November 2015

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The role of common, low to intermediate risk alleles in breast cancer need to be examined due to their relatively high prevalence. Among many cellular pathways, replication has a pivotal role in cell division and frequently targeted during carcinogenesis. Replication is governed by a host of genes involved in a number of different pathways. This study investigates the effects of replication-gene variants in relation to breast cancer and how this relationship is affected by ethnicity, menopausal status and breast tumour subtype. Methods: Data from a case-control study with 997 incident breast cancer cases and 1,050 age frequency matched controls in Vancouver, British Columbia and Kingston, Ontario were used. Unconditional logistic regression was used to calculate odds ratios between 45 replication gene variants and breast cancer risk, assuming an additive genetic model adjusted for age and centre, presented for Europeans and East Asians separately. Polytomous logistic regression was used to assess odds ratios between each SNP and four breast cancer subtypes defined by hormone receptor status among Europeans. All analyses were stratified by menopausal status. The Benjamini–Hochberg false discovery rate (FDR) was used to address multiple comparisons. Results: Among Europeans, the SNPs in FGFR2, TOX3 and 11q13 loci were associated with breast cancer after controlling for multiple comparisons. Test of heterogeneity showed the SNPs rs1045185, rs4973768, rs672888, rs1219648, rs2420946 among Europeans and rs889312 among East Asians conferred differential risk across the tumour subtypes. Conclusions: Specific SNPs in replication genes were associated with breast cancer, and the risk level differed by tumour subtype defined by ER/PR/Her2 status and ethnicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we demonstrate that the prototype B. breve strain UCC2003 possesses specific metabolic pathways for the utilisation of lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT), which represent the central moieties of Type I and Type II human milk oligosaccharides (HMOs), respectively. Using a combination of experimental approaches, the enzymatic machinery involved in the metabolism of LNT and LNnT was identified and characterised. Homologs of the key genetic loci involved in the utilisation of these HMO substrates were identified in B. breve, B. bifidum, B. longum subsp. infantis and B. longum subsp. longum using bioinformatic analyses, and were shown to be variably present among other members of the Bifidobacterium genus, with a distinct pattern of conservation among human-associated bifidobacterial species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hereditary optic neuropathies (HON) are a genetic cause of visual impairment characterized by degeneration of retinal ganglion cells. The majority of HON are caused by pathogenic variants in mtDNA genes and in gene OPA1. However, several other genes can cause optic atrophy and can only be identified by high throughput genetic analysis. Whole Exome Sequencing (WES) is becoming the primary choice in rare disease molecular diagnosis, being both cost effective and informative. We performed WES on a cohort of 106 cases, of which 74 isolated ON patients (ON) and 32 syndromic ON patients (sON). The total diagnostic yield amounts to 27%, slightly higher for syndromic ON (31%) than for isolated ON (26%). The majority of genes found are related to mitochondrial function and already reported for harbouring HON pathogenic variants: ACO2, AFG3L2, C19orf12, DNAJC30, FDXR, MECR, MTFMT, NDUFAF2, NDUFB11, NDUFV2, OPA1, PDSS1, SDHA, SSBP1, and WFS1. Among these OPA1, ACO2, and WFS1 were confirmed as the most relevant genetic causes of ON. Moreover, several genes were identified, especially in sON patients, with direct impairment of non-mitochondrial molecular pathways: from autophagy and ubiquitin system (LYST, SNF8, WDR45, UCHL1), to neural cells development and function (KIF1A, GFAP, EPHB2, CACNA1A, CACNA1F), but also vitamin metabolism (SLC52A2, BTD), cilia structure (USH2A), and nuclear pore shuttling (NUTF2). Functional validation on yeast model was performed for pathogenic variants detected in MECR, MTFMT, SDHA, and UCHL1 genes. For SDHA and UCHL1 also muscle biopsy and fibroblast cell lines from patients were analysed, pointing to possible pathogenic mechanisms that will be investigated in further studies. In conclusion, WES proved to be an efficient tool when applied to our ON cohort, for both common disease-genes identification and novel genes discovery. It is therefore recommended to consider WES in ON molecular diagnostic pipeline, as for other rare genetic diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classical myeloproliferative neoplasms (MPNs) are hematopoietic stem cell disorders that manifest with inflammation, promotion of atherosclerosis, hypercoagulability, fibrosis, and clonal evolution. The complex biological background lends itself to multi-omics studies. We have previously shown that reduced platelet fibrinogen receptor (PFR) expression may follow hyperactivation of plasma-dependent mechanisms, such as tissue factor (TF) release, unbalanced thrombin generation, involvement of protease-activated receptors (PARs). Acetylsalicylic acid (ASA) helped to restore the expression of PFRs. In this study, we enrolled 53 MPN patients, subjecting them to advanced genetic testing (panel of 30 genes in NGS), global coagulation testing (Rotational Thromboelastometry - ROTEM) and cytofluorometric determination of PFRs. ROTEM parameters appear to differ considerably depending on the type of pathology under investigation, cell count, and selected mutations. Essential thrombocythemia (ET) and CALR mutation appear to correlate with increased efficiency of both classical coagulation pathways, with significantly more contracted clot formation times (CFTs). In contrast, primary myelofibrosis (PMF) and polycythemia vera (PV) show greater imbalances in the hemostatic system. PV, probably due to its peculiar hematological features, shows a lengthening of the CFT and, at the same time, a selective contraction of parameters in INTEM with the increase of platelets and white blood cells. PMF - in contrast - seems to exploit the extrinsic pathway more to increase cell numbers. The presence of DNMT3A mutations is associated with reduced clotting time (CT) in EXTEM, while ASXL1 causes reduced maximal lysis (ML). EZH2 could be responsible for the elongation of CFT in INTEM assay. In addition, increased PFR expression is associated with history of hemorrhage and sustained CT time in FIBTEM under ASA prophylaxis. Our findings corroborate the existing models on the connection between fibrosis, genetic complexity, clonal progression, and hypercoagulability. Global coagulation assays and PFR expression are potentially useful tools for dynamic evaluation of treatments’ outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Metazoa, the germline represents the cell lineage devoted to transmission of genetic heredity across generations. Its functions intuitively evoke the crucial roles that it plays in the development of a new organism and in the evolution of the species. Germline establishment is tightly tied to animal multicellularity itself, in which the complex differentiation of cell lineages is favoured by the confinement of totipotency in specific cell populations. In the present thesis, I addressed the subject of germline characterization in animals through different approaches, in an attempt to cover different sides and scales. First, I investigated the extent and nature of shared differentially transcribed molecular factors in 10 different species germline-related lineages. I observed that newly evolved genes are less likely to be involved in germline-related mechanisms and that the mostly shared transcriptional signal across the species considered was the upregulation of genes associated to proper DNA replication, instead of the expected transcriptional and post-transcriptional regulation, that apparently have a higher level of lineage-specificity. I then focused on the evolutionary history of Tudor domain containing proteins, a gene family that underwent germline-associated expansions in animals. Using data from 24 holozoan phyla, I could confirm the previously proposed evolution of the Tudor domain secondary structure. Also, I associated lineage-specific family reductions and expansions to peculiar genomic dynamics and to the evolution of germline-associated piRNA pathway of retrotransposon silencing. Lastly, I characterized and investigated the expression of the Tudor protein TDRD7 in the clam Ruditapes philippinarum. Through immunolocalization, I could compare its expression profiles in gametogenic specimens to the previously characterized germline marker vasa. Combining results with literature, I proposed that, in this species, TDRD7 is involved in the assembly of germ granules, i.e. cytoplasmic structures associated to germline differentiation in virtually all animals, but whose assemblers can be taxon specific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current dominance of African runners in long-distance running is an intriguing phenomenon that highlights the close relationship between genetics and physical performance. Many factors in the interesting interaction between genotype and phenotype (eg, high cardiorespiratory fitness, higher hemoglobin concentration, good metabolic efficiency, muscle fiber composition, enzyme profile, diet, altitude training, and psychological aspects) have been proposed in the attempt to explain the extraordinary success of these runners. Increasing evidence shows that genetics may be a determining factor in physical and athletic performance. But, could this also be true for African long-distance runners? Based on this question, this brief review proposed the role of genetic factors (mitochondrial deoxyribonucleic acid, the Y chromosome, and the angiotensin-converting enzyme and the alpha-actinin-3 genes) in the amazing athletic performance observed in African runners, especially the Kenyans and Ethiopians, despite their environmental constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is great interindividual variability in the response to GH therapy. Ascertaining genetic factors can improve the accuracy of growth response predictions. Suppressor of cytokine signaling (SOCS)-2 is an intracellular negative regulator of GH receptor (GHR) signaling. The objective of the study was to assess the influence of a SOCS2 polymorphism (rs3782415) and its interactive effect with GHR exon 3 and -202 A/C IGFBP3 (rs2854744) polymorphisms on adult height of patients treated with recombinant human GH (rhGH). Genotypes were correlated with adult height data of 65 Turner syndrome (TS) and 47 GH deficiency (GHD) patients treated with rhGH, by multiple linear regressions. Generalized multifactor dimensionality reduction was used to evaluate gene-gene interactions. Baseline clinical data were indistinguishable among patients with different genotypes. Adult height SD scores of patients with at least one SOCS2 single-nucleotide polymorphism rs3782415-C were 0.7 higher than those homozygous for the T allele (P < .001). SOCS2 (P = .003), GHR-exon 3 (P= .016) and -202 A/C IGFBP3 (P = .013) polymorphisms, together with clinical factors accounted for 58% of the variability in adult height and 82% of the total height SD score gain. Patients harboring any two negative genotypes in these three different loci (homozygosity for SOCS2 T allele; the GHR exon 3 full-length allele and/or the -202C-IGFBP3 allele) were more likely to achieve an adult height at the lower quartile (odds ratio of 13.3; 95% confidence interval of 3.2-54.2, P = .0001). The SOCS2 polymorphism (rs3782415) has an influence on the adult height of children with TS and GHD after long-term rhGH therapy. Polymorphisms located in GHR, IGFBP3, and SOCS2 loci have an influence on the growth outcomes of TS and GHD patients treated with rhGH. The use of these genetic markers could identify among rhGH-treated patients those who are genetically predisposed to have less favorable outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the great challenges of the scientific community on theories of genetic information, genetic communication and genetic coding is to determine a mathematical structure related to DNA sequences. In this paper we propose a model of an intra-cellular transmission system of genetic information similar to a model of a power and bandwidth efficient digital communication system in order to identify a mathematical structure in DNA sequences where such sequences are biologically relevant. The model of a transmission system of genetic information is concerned with the identification, reproduction and mathematical classification of the nucleotide sequence of single stranded DNA by the genetic encoder. Hence, a genetic encoder is devised where labelings and cyclic codes are established. The establishment of the algebraic structure of the corresponding codes alphabets, mappings, labelings, primitive polynomials (p(x)) and code generator polynomials (g(x)) are quite important in characterizing error-correcting codes subclasses of G-linear codes. These latter codes are useful for the identification, reproduction and mathematical classification of DNA sequences. The characterization of this model may contribute to the development of a methodology that can be applied in mutational analysis and polymorphisms, production of new drugs and genetic improvement, among other things, resulting in the reduction of time and laboratory costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prosopis rubriflora and Prosopis ruscifolia are important species in the Chaquenian regions of Brazil. Because of the restriction and frequency of their physiognomy, they are excellent models for conservation genetics studies. The use of microsatellite markers (Simple Sequence Repeats, SSRs) has become increasingly important in recent years and has proven to be a powerful tool for both ecological and molecular studies. In this study, we present the development and characterization of 10 new markers for P. rubriflora and 13 new markers for P. ruscifolia. The genotyping was performed using 40 P. rubriflora samples and 48 P. ruscifolia samples from the Chaquenian remnants in Brazil. The polymorphism information content (PIC) of the P. rubriflora markers ranged from 0.073 to 0.791, and no null alleles or deviation from Hardy-Weinberg equilibrium (HW) were detected. The PIC values for the P. ruscifolia markers ranged from 0.289 to 0.883, but a departure from HW and null alleles were detected for certain loci; however, this departure may have resulted from anthropic activities, such as the presence of livestock, which is very common in the remnant areas. In this study, we describe novel SSR polymorphic markers that may be helpful in future genetic studies of P. rubriflora and P. ruscifolia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-throughput screening of physical, genetic and chemical-genetic interactions brings important perspectives in the Systems Biology field, as the analysis of these interactions provides new insights into protein/gene function, cellular metabolic variations and the validation of therapeutic targets and drug design. However, such analysis depends on a pipeline connecting different tools that can automatically integrate data from diverse sources and result in a more comprehensive dataset that can be properly interpreted. We describe here the Integrated Interactome System (IIS), an integrative platform with a web-based interface for the annotation, analysis and visualization of the interaction profiles of proteins/genes, metabolites and drugs of interest. IIS works in four connected modules: (i) Submission module, which receives raw data derived from Sanger sequencing (e.g. two-hybrid system); (ii) Search module, which enables the user to search for the processed reads to be assembled into contigs/singlets, or for lists of proteins/genes, metabolites and drugs of interest, and add them to the project; (iii) Annotation module, which assigns annotations from several databases for the contigs/singlets or lists of proteins/genes, generating tables with automatic annotation that can be manually curated; and (iv) Interactome module, which maps the contigs/singlets or the uploaded lists to entries in our integrated database, building networks that gather novel identified interactions, protein and metabolite expression/concentration levels, subcellular localization and computed topological metrics, GO biological processes and KEGG pathways enrichment. This module generates a XGMML file that can be imported into Cytoscape or be visualized directly on the web. We have developed IIS by the integration of diverse databases following the need of appropriate tools for a systematic analysis of physical, genetic and chemical-genetic interactions. IIS was validated with yeast two-hybrid, proteomics and metabolomics datasets, but it is also extendable to other datasets. IIS is freely available online at: http://www.lge.ibi.unicamp.br/lnbio/IIS/.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

this study aimed to investigate the cognitive and behavioral profiles, as well as the psychiatric symptoms and disorders in children with three different genetic syndromes with similar sociocultural and socioeconomic backgrounds. thirty-four children aged 6 to 16 years, with Williams-Beuren syndrome (n=10), Prader-Willi syndrome (n=11), and Fragile X syndrome (n=13) from the outpatient clinics of Child Psychiatry and Medical Genetics Department were cognitively assessed through the Wechsler Intelligence Scale for Children (WISC-III). Afterwards, a full-scale intelligence quotient (IQ), verbal IQ, performance IQ, standard subtest scores, as well as frequency of psychiatric symptoms and disorders were compared among the three syndromes. significant differences were found among the syndromes concerning verbal IQ and verbal and performance subtests. Post-hoc analysis demonstrated that vocabulary and comprehension subtest scores were significantly higher in Williams-Beuren syndrome in comparison with Prader-Willi and Fragile X syndromes, and block design and object assembly scores were significantly higher in Prader-Willi syndrome compared with Williams-Beuren and Fragile X syndromes. Additionally, there were significant differences between the syndromes concerning behavioral features and psychiatric symptoms. The Prader-Willi syndrome group presented a higher frequency of hyperphagia and self-injurious behaviors. The Fragile X syndrome group showed a higher frequency of social interaction deficits; such difference nearly reached statistical significance. the three genetic syndromes exhibited distinctive cognitive, behavioral, and psychiatric patterns.