965 resultados para Gap model
Resumo:
Within the framework of the mean-field hydrodynamic model of a degenerate Fermi gas ( DFG), we study, by means of numerical methods and variational approximation ( VA), the formation of fundamental gap solitons ( FGSs) in a DFG ( or in a BCS superfluid generated by weak interaction between spin- up and spin- down fermions), which is trapped in a periodic optical- lattice ( OL) potential. An effectively one- dimensional ( 1D) con. guration is considered, assuming strong transverse confinement; in parallel, a proper 1D model of the DFG ( which amounts to the known quintic equation for the Tonks- Girardeau gas in the OL) is considered too. The FGSs found in the first two bandgaps of the OL- induced spectrum ( unless they are very close to edges of the gaps) feature a ( tightly bound) shape, being essentially confined to a single cell of the OL. In the second bandgap, we also find antisymmetric tightly bound subfundamental solitons ( SFSs), with zero at the midpoint. The SFSs are also confined to a single cell of the OL, but, unlike the FGSs, they are unstable. The predicted solitons, consisting of similar to 10(4) - 10(5) atoms, can be created by available experimental techniques in the DFG of Li-6 atoms.
Resumo:
We propose an approach which allows one to construct and use a potential function written in terms of an angle variable to describe interacting spin systems. We show how this can be implemented in the Lipkin-Meshkov-Glick, here considered a paradigmatic spin model. It is shown how some features of the energy gap can be interpreted in terms of a spin tunneling. A discrete Wigner function is constructed for a symmetric combination of two states of the model and its time evolution is obtained. The physical information extracted from that function reinforces our description of phase oscillations in a potential. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We consider a dynamical model of a superfluid Fermi gas in the Bardeen-Cooper-Schrieffer regime trapped in a periodic optical lattice (OL) potential. The model is based on an equation for complex order parameter phi of the superfluid, which is derived from the relevant energy density and includes a self-repulsive term similar to phi(7/3). By means of the variational approximation (VA) and numerical simulations, we find families of stable one- and two-dimensional (I D and 2D) gap solitons (GSs) in this model. Chiefly, they are compact objects trapped in a single cell of the OL. Families of stable even and odd bound states of these GSs are also found in one dimension. A 3D GS family is constructed too, but solely within the framework of the VA. In the linear limit, the VA predicts an almost exact position of the left edge of the first band-gap in the OL-induced spectrum. The full VA provides an accurate description of families of I D and 2D fundamental GSs. We also demonstrate that a I D GS can be safely transported by an OL moving at a moderate velocity. (C) 2009 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
An integrable asymmetric exclusion process with impurities is formulated. The model displays the full spectrum of the stochastic asymmetric XXZ chain plus new levels. We derive the Bethe equations and calculate the spectral gap for the totally asymmetric diffusion at half filling. While the standard asymmetric exclusion process without impurities belongs to the KPZ universality class with an exponent 3/2, our model has a scaling exponent 5/3.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We study the (D) over barN interaction at low energies with a quark model inspired in the QCD Hamiltonian in Coulomb gauge. The model Hamiltonian incorporates a confining Coulomb potential extracted from a self-consistent quasiparticle method for the gluon degrees of freedom, and transverse-gluon hyperfine interaction consistent with a finite gluon propagator in the infrared. Initially a constituent-quark mass function is obtained by solving a gap equation and baryon and meson bound-states are obtained in Fock space using a variational calculation. Next, having obtained the constituent-quark masses and the hadron waves functions, an effective meson-nucleon interaction is derived from a quark-interchange mechanism. This leads to a short range meson-baryon interaction and to describe long-distance physics vector- and scalar-meson exchanges described by effective Lagrangians are incorporated. The derived effective (D) over barN potential is used in a Lippmann-Schwinger equation to obtain phase shifts. The results are compared with a recent similar calculation using the nonrelativistic quark model.
Resumo:
We propose a two band model for superconductivity. It turns out that the simplest nontrivial case considers solely interband scattering, and both bands can be modeled as symmetric (around the Fermi level) and flat, thus each band is completely characterized by its half-band width Wn (n=1,2). A useful dimensionless parameter is d, proportional to W2 - W1. The case delta = 0 retrieves the conventional BCS model. We probe the specific heat, the ratio gap over critical temperature, the thermodynamic critical field and tunneling conductance as functions of d and temperature (from zero to Tc). We compare our results with experimental results for MgB2 and good quantitative agreement is obtained, indicating the relevance of interband coupling. Work in progress also considers the inclusion of band hybridization and general interband as well as intra-band scattering mechanisms.
Resumo:
Supersymmetry is already observed in (i) nuclear physics where the same empirical formula based on a graded Lie group described even-even and odd-even nuclear spectra and (ii) in Nambu-BCS theory where there is a simple relationship between the energy gap of the basic fermion and the bosonic collective modes. We now suggest similar relationships between the large number of mesonic and baryonic excitations based on the SU(3) substructure in the U(15/30) graded Lie group.
Resumo:
Includes bibliography
Resumo:
Purpose: The aim of this work is to address the issue of environmental training in organizations, presenting a theoretical review on the subject and proposing a model that highlights the importance of this type of training for organizations. Design/methodology/approach: The paper presents a thorough, updated literature review, discusses typology and the best practices of environmental training, and presents a framework integrating environmental training and organizational results. Findings: A careful consideration allows identifying a significant theoretical gap related to the lack of theoretical references, best practices, and an alignment between environmental training and organizational results. To overcome this gap, a model was proposed that helps to manage the environmental training process in organizations. Research limitations/implications: The paper needs to be complemented with empirical research on the topic. Originality/value: Environmental training is considered to be an essential element for organizations seeking to mitigate their environmental impacts. ISO 14001 states that environmental management is a duty of certified organizations. However, there have been few published articles that suggest models and insights to improve the environmental training in organizations. © Emerald Group Publishing Limited.
Resumo:
This paper presents a domain ontology, the FeelingTheMusic Ontology - FTMOntology. FTMOntology is designed to represent the complex domain of music and how it relates to other domains like mood, personality and physiology. This includes representing the main concepts and relations of music domain with each of the above-mentioned domains. The concepts and relations between music, mood, personality and physiology. The main contribution of this work is to model and relate these different domains in a consistent ontology. © 2011 Springer-Verlag.
Resumo:
We investigate the low-energy elastic D̄N interaction using a quark model that confines color and realizes dynamical chiral symmetry breaking. The model is defined by a microscopic Hamiltonian inspired in the QCD Hamiltonian in Coulomb gauge. Constituent quark masses are obtained by solving a gap equation, and baryon and meson bound-state wave functions are obtained using a variational method. We derive a low-energy meson-nucleon potential from a quark-interchange mechanism whose ingredients are the quark-quark and quark-antiquark interactions and baryon and meson wave functions, all derived from the same microscopic Hamiltonian. The model is supplemented with (σ, ρ, ω, a0) single-meson exchanges to describe the long-range part of the interaction. Cross sections and phase shifts are obtained by iterating the quark-interchange plus meson-exchange potentials in a Lippmann-Schwinger equation. Once coupling constants of long-range scalar σ and a0 meson exchanges are adjusted to describe experimental phase shifts of the K+N and K0N reactions, predictions for cross sections and s-wave phase shifts for the D̄0N and D-N reactions are obtained without introducing new parameters. © 2013 American Physical Society.
Resumo:
Background: In a previous study utilizing the rat model, exposure to tobacco smoke for 5 weeks increased survival after AMI, despite similar age and infarct size between the smokers and nonsmokers, and absence of reperfusion. Objective: Thus, this study aimed to analyze the effects of exposure to tobacco smoke on intensity, distribution or phosphorylation of connexin 43 in the rat heart. Methods: Wistar rats weighing 100 g were randomly allocated into 2 groups: 1) Control (n = 25); 2) Exposed to tobacco smoke (ETS), n = 23. After 5 weeks, left ventricular morphometric analysis, immunohisthochemistry and western blotting for connexin 43 (Cx43) were performed. Results: Collagen volume fraction, cross-sectional areas, and ventricular weight were not statistically different between control and ETS. ETS showed lower stain intensity of Cx43 at intercalated disks (Control: 2.32 ± 0.19; ETS: 1.73 ± 0.18; p = 0.04). The distribution of CX43 at intercalated disks did not differ between the groups (Control: 3.73 ± 0.12; ETS: 3.20 ± 0.17; p = 0.18). ETS rats showed higher levels of dephosphorylated form of Cx43 (Control: 0.45 ± 0.11; ETS: 0.90 ± 0.11; p = 0.03). On the other hand, total Cx43 did not differ between control and ETS groups (Control: 0.75 ± 0.19; ETS: 0.93 ± 0.27; p = 0.58). Conclusion: Exposure to tobacco smoke resulted in cardiac gap junction remodeling, characterized by alterations in the quantity and phosphorylation of the Cx43, in rats hearts. This finding could explain the smoker's paradox observed in some studies.
Resumo:
Aim Primary implant stability can be compromised by overdrilling of the implant bed. Filling the gap between the implant and the bone with a highly viscous copolymer of polylactic and polyglycolic acid (PLA/PGA) might stabilize the implant and thus supply osseointegration. The aim of this study was to evaluate implants installed in overdrilled beds associated with PLA/PGA in rats tibia model by means of removal torque test and fluorochrome analysis. Materials and methods For this experiment two groups were selected: in the test group 0.4 mm overdrilled defects (2.0 in diameter and 3 mm long ) were produced in the right tibia of seven rats and implants were placed covered with PLA/PGA biomaterial to fill the gap; the control group was not overdrilled and the implants were placed without the biomaterial. Implants of 1.6 mm in diameter and 3 mm long where placed into all defects. Calcein, alizarin and oxytetracyclin were injected at 7, 15 and 21 postoperative days, respectively, and the animals were sacrificed at 35 postoperative day. Results The results showed that all the implants achieved osseointegration. There were no statistical significance differences in torque-reverse and fluorocrome analysis (P>0.05). Conclusion We can conclude that overdrilled defects filled with PLA/PGA did not disturb osseointegration in this experimental model. © ARIESDUE.