778 resultados para Galileo receivers
Resumo:
This paper presents a deterministic modelling approach to predict diffraction loss for an innovative Multi-User-Single-Antenna (MUSA) MIMO technology, proposed for rural Australian environments. In order to calculate diffraction loss, six receivers have been considered around an access point in a selected rural environment. Generated terrain profiles for six receivers are presented in this paper. Simulation results using classical diffraction models and diffraction theory are also presented by accounting the rural Australian terrain data. Results show that in an area of 900 m by 900 m surrounding the receivers, path loss due to diffraction can range between 5 dB and 35 dB. Diffraction loss maps can contribute to determine the optimal location for receivers of MUSA-MIMO systems in rural areas.
Resumo:
With an amalgam of statutory and common law duties, great care has always been required when considering the obligations of either mortgagees or receivers when exercising power of sale. Unfortunately, that position has only become more complicated with the enactment of the Property Law (Mortgagor Protection) Amendment Act 2008 (Qld).
Resumo:
Background: It is predicted that China will have the largest number of cases of dementia in the world by 2025 (Ferri et al., 2005). Research has demonstrated that caring for family members with dementia can be a long-term, burdensome activity resulting in physical and emotional distress and impairment (Pinquart & Sorensen, 2003b). The establishment of family caregiver supportive services in China can be considered urgent; and the knowledge of the caregiving experience and related influencing factors is necessary to inform such services. Nevertheless, in the context of rapid demographic and socioeconomic change, the impact of caregiving for rural and urban Chinese adult-child caregivers may be different, and different needs in supportive services may therefore be expected. Objectives: The aims of this research were 1) to examine the potential differences existing in the caregiving experience between rural and urban adult-child caregivers caring for parents with dementia in China; and 2) to examine the potential differences existing in the influencing factors of the caregiving experience for rural as compared with urban adult-child caregivers caring for parents with dementia in China. Based on the literature review and Kramer.s (1997) caregiver adaptation model, six concepts and their relationships of caregiving experience were studied: severity of the care receivers. dementia, caregivers. appraisal of role strain and role gain, negative and positive well-being outcomes, and health related quality of life. Furthermore, four influencing factors (i.e., filial piety, social support, resilience, and personal mastery) were studied respectively. Methods: A cross-sectional, comparative design was used to achieve the aims of the study. A questionnaire, which was designed based on the literature review and on Kramer.s (1997) caregiver adaptation model, was completed by 401 adult-child caregivers caring for their parents with dementia from the mental health outpatient departments in five hospitals in the Yunnan province, P.R. China. Structural equation modelling (SEM) was employed as the main statistical technique for data analyses. Other statistical techniques (e.g., t-tests and Chi-Square tests) were also conducted to compare the demographic characteristics and the measured variables between rural and urban groups. Results: For the first research aim, the results indicated that urban adult-child caregivers in China experienced significantly greater strain and negative well-being outcomes than their rural peers; whereas, the difference on the appraisal of role gain and positive outcomes was nonsignificant between the two groups. The results also indicated that the amounts of severity of care receivers. dementia and caregivers. health related quality of life do not have the same meanings between the two groups. Thus, the levels of these two concepts were not comparable between the rural and urban groups in this study. Moreover, the results also demonstrated that the negative direct effect of gain on negative outcomes in urban caregivers was stronger than that in rural caregivers, suggesting that the urban caregivers tended to use appraisal of role gain to protect themselves from negative well-being outcomes to a greater extent. In addition, the unexplained variance in strain in the urban group was significantly more than that in the rural group, suggesting that there were other unmeasured variables besides the severity of care receivers. dementia which would predict strain in urban caregivers compared with their rural peers. For the second research aim, the results demonstrated that rural adult-child caregivers reported a significantly higher level of filial piety and more social support than their urban counterparts, although the two groups did not significantly differ on the levels of their resilience and personal mastery. Furthermore, although the mediation effects of these four influencing factors on both positive and negative aspects remained constant across rural and urban adult-child caregivers, urban caregivers tended to be more effective in using personal mastery to protect themselves from role strain than rural caregivers, which in turn protects them more from the negative well-being outcomes than was the case with their rural peers. Conclusions: The study extends the application of Kramer.s caregiving adaptation process model (Kramer, 1997) to a sample of adult-child caregivers in China by demonstrating that both positive and negative aspects of caregiving may impact on the caregiver.s health related quality of life, suggesting that both aspects should be targeted in supportive interventions for Chinese family caregivers. Moreover, by demonstrating partial mediation effects, the study provides four influencing factors (i.e., filial piety, social support, resilience, and personal mastery) as specific targets for clinical interventions. Furthermore, the study found evidence that urban adult-child caregivers had more negative but similar positive experience compared to their rural peers, suggesting that the establishment of supportive services for urban caregivers may be more urgent at present stage in China. Additionally, since urban caregivers tended to use appraisal of role gain and personal mastery to protect themselves from negative well-being outcomes than rural caregivers to a greater extend, interventions targeting utility of gain or/and personal mastery to decrease negative outcomes might be more effective in urban caregivers than in rural caregivers. On the other hand, as cultural expectations and expression of filial piety tend to be more traditional in rural areas, interventions targeting filial piety could be more effective among rural caregivers. Last but not least, as rural adult-child caregivers have more existing natural social support than their urban counterparts, mobilising existing natural social support resources may be more beneficial for rural caregivers, whereas, formal supports (e.g., counselling services, support groups and adult day care centres) should be enhanced for urban caregivers.
Resumo:
The gathering of people in everyday life is intertwined with travelling to negotiated locations. As a result, mobile phones are often used to rearrange meetings when one or more participants are late or cannot make it on time. Our research is based on the hypothesis that the provision of location data can enhance the experience of people who are meeting each other in different locations. Disposable Maps allows users to select contacts from their phone’s address book who then receive up-to-date location data. The utilisation of peer-to-peer notifications and the application of unique URLs for location storage and presentation enable location sharing whilst ensuring users’ location privacy. In contrast to other location sharing services like Google Latitude, Disposable Maps enables ad hoc location sharing to actively selected location receivers for a fixed period of time in a specific given situation.
Resumo:
In order to support intelligent transportation system (ITS) road safety applications such as collision avoidance, lane departure warnings and lane keeping, Global Navigation Satellite Systems (GNSS) based vehicle positioning system has to provide lane-level (0.5 to 1 m) or even in-lane-level (0.1 to 0.3 m) accurate and reliable positioning information to vehicle users. However, current vehicle navigation systems equipped with a single frequency GPS receiver can only provide road-level accuracy at 5-10 meters. The positioning accuracy can be improved to sub-meter or higher with the augmented GNSS techniques such as Real Time Kinematic (RTK) and Precise Point Positioning (PPP) which have been traditionally used in land surveying and or in slowly moving environment. In these techniques, GNSS corrections data generated from a local or regional or global network of GNSS ground stations are broadcast to the users via various communication data links, mostly 3G cellular networks and communication satellites. This research aimed to investigate the precise positioning system performances when operating in the high mobility environments. This involves evaluation of the performances of both RTK and PPP techniques using: i) the state-of-art dual frequency GPS receiver; and ii) low-cost single frequency GNSS receiver. Additionally, this research evaluates the effectiveness of several operational strategies in reducing the load on data communication networks due to correction data transmission, which may be problematic for the future wide-area ITS services deployment. These strategies include the use of different data transmission protocols, different correction data format standards, and correction data transmission at the less-frequent interval. A series of field experiments were designed and conducted for each research task. Firstly, the performances of RTK and PPP techniques were evaluated in both static and kinematic (highway with speed exceed 80km) experiments. RTK solutions achieved the RMS precision of 0.09 to 0.2 meter accuracy in static and 0.2 to 0.3 meter in kinematic tests, while PPP reported 0.5 to 1.5 meters in static and 1 to 1.8 meter in kinematic tests by using the RTKlib software. These RMS precision values could be further improved if the better RTK and PPP algorithms are adopted. The tests results also showed that RTK may be more suitable in the lane-level accuracy vehicle positioning. The professional grade (dual frequency) and mass-market grade (single frequency) GNSS receivers were tested for their performance using RTK in static and kinematic modes. The analysis has shown that mass-market grade receivers provide the good solution continuity, although the overall positioning accuracy is worse than the professional grade receivers. In an attempt to reduce the load on data communication network, we firstly evaluate the use of different correction data format standards, namely RTCM version 2.x and RTCM version 3.0 format. A 24 hours transmission test was conducted to compare the network throughput. The results have shown that 66% of network throughput reduction can be achieved by using the newer RTCM version 3.0, comparing to the older RTCM version 2.x format. Secondly, experiments were conducted to examine the use of two data transmission protocols, TCP and UDP, for correction data transmission through the Telstra 3G cellular network. The performance of each transmission method was analysed in terms of packet transmission latency, packet dropout, packet throughput, packet retransmission rate etc. The overall network throughput and latency of UDP data transmission are 76.5% and 83.6% of TCP data transmission, while the overall accuracy of positioning solutions remains in the same level. Additionally, due to the nature of UDP transmission, it is also found that 0.17% of UDP packets were lost during the kinematic tests, but this loss doesn't lead to significant reduction of the quality of positioning results. The experimental results from the static and the kinematic field tests have also shown that the mobile network communication may be blocked for a couple of seconds, but the positioning solutions can be kept at the required accuracy level by setting of the Age of Differential. Finally, we investigate the effects of using less-frequent correction data (transmitted at 1, 5, 10, 15, 20, 30 and 60 seconds interval) on the precise positioning system. As the time interval increasing, the percentage of ambiguity fixed solutions gradually decreases, while the positioning error increases from 0.1 to 0.5 meter. The results showed the position accuracy could still be kept at the in-lane-level (0.1 to 0.3 m) when using up to 20 seconds interval correction data transmission.
Resumo:
In many applications, where encrypted traffic flows from an open (public) domain to a protected (private) domain, there exists a gateway that bridges the two domains and faithfully forwards the incoming traffic to the receiver. We observe that indistringuishability against (adaptive) chosen-ciphertext attacks (IND-CCA), which is a mandatory goal in face of active attacks in a public domain, can be essentially relaxed to indistinguishability against chosen-plaintext attacks (IND-CPA) for ciphertexts once they pass the gateway that acts as an IND-CCA/CPA filter by first checking the validity of an incoming IND-CCA ciphertext, then transforming it (if valid) into an IND-CPA ciphertext, and forwarding the latter to the receipient in the private domain. "Non-trivial filtering" can result in reduced decryption costs on the receivers' side. We identify a class of encryption schemes with publicaly verifiable ciphertexts that admit generic constructions of (non-trivial) IND-CCA/CPA filters. These schemes are characterized by existence of public algorithms that can distinguish between valid and invalid ciphertexts. To this end, we formally define (non-trivial) public verifiability of ciphertexts for general encryption schemes, key encapsulation mechanisms, and hybrid encryption schemes, encompassing public-key, identity-based, and tag-based encryption flavours. We further analyze the security impact of public verifiability and discuss generic transformations and concrete constructions that enjoy this property.
Resumo:
Reliable ambiguity resolution (AR) is essential to Real-Time Kinematic (RTK) positioning and its applications, since incorrect ambiguity fixing can lead to largely biased positioning solutions. A partial ambiguity fixing technique is developed to improve the reliability of AR, involving partial ambiguity decorrelation (PAD) and partial ambiguity resolution (PAR). Decorrelation transformation could substantially amplify the biases in the phase measurements. The purpose of PAD is to find the optimum trade-off between decorrelation and worst-case bias amplification. The concept of PAR refers to the case where only a subset of the ambiguities can be fixed correctly to their integers in the integer least-squares (ILS) estimation system at high success rates. As a result, RTK solutions can be derived from these integer-fixed phase measurements. This is meaningful provided that the number of reliably resolved phase measurements is sufficiently large for least-square estimation of RTK solutions as well. Considering the GPS constellation alone, partially fixed measurements are often insufficient for positioning. The AR reliability is usually characterised by the AR success rate. In this contribution an AR validation decision matrix is firstly introduced to understand the impact of success rate. Moreover the AR risk probability is included into a more complete evaluation of the AR reliability. We use 16 ambiguity variance-covariance matrices with different levels of success rate to analyse the relation between success rate and AR risk probability. Next, the paper examines during the PAD process, how a bias in one measurement is propagated and amplified onto many others, leading to more than one wrong integer and to affect the success probability. Furthermore, the paper proposes a partial ambiguity fixing procedure with a predefined success rate criterion and ratio-test in the ambiguity validation process. In this paper, the Galileo constellation data is tested with simulated observations. Numerical results from our experiment clearly demonstrate that only when the computed success rate is very high, the AR validation can provide decisions about the correctness of AR which are close to real world, with both low AR risk and false alarm probabilities. The results also indicate that the PAR procedure can automatically chose adequate number of ambiguities to fix at given high-success rate from the multiple constellations instead of fixing all the ambiguities. This is a benefit that multiple GNSS constellations can offer.
Resumo:
Purpose: Recent knowledge management (KM) literature suggests that KM activities are influenced by the elements of the internal business environment (BE) of organisations. This paper attempts to provide some unique insights into the contextual input of the KM process through empirically identifying the major factors (i.e. “forces”) within the internal BE of construction organisations operating in Hong Kong, and investigating their impact on the intensity of KM activities. Design/methodology/approach: A questionnaire survey was administered to a sample of construction contractors operating in Hong Kong to elicit opinions on the internal BE and intensity of KM activities as executed by targeted organisations. A total of 149 usable responses were received from 99 organisations representing about 38 percent of the research population. In parallel, to the survey, a total of 15 semi-structured interviews were undertaken to provide more insights into the phenomenon under investigation. Findings: Supported by the empirical and qualitative evidence, this study established that firstly, both organisational and technical environments have the capacity to either positively or negatively impact the intensity of KM activities, and both environments serve as stimuli in increasing each other's dynamism; secondly, certain types of KM activities are stronger “energy receivers” and easily to be “powered up” by manipulating factors representing these two environments. Then, through interactions between KM activities, the intensity of the whole strategic KM cycle will be increased thus helping to strengthen organisational competitive advantage.
Resumo:
Axial acoustic wave propagation has been widely used in evaluating the mechanical properties of human bone in vivo. However, application of this technique to monitor soft tissues, such as tendon, has received comparatively little scientific attention. Laboratory-based research has established that axial acoustic wave transmission is not only related to the physical properties of equine tendon but is also proportional to tensile load to which it is exposed (Miles et al., 1996; Pourcelot et al., 2005). The reproducibility of the technique for in vivo measurements in human tendon, however, has not been established. The aim of this study was to evaluate the limits of agreement for repeated measures of the speed of sound (SoS) in human Achilles tendon in vivo. Methods: A custom built ultrasound device, consisting of an A-mode 1MHz emitter and two regularly spaced receivers, was used to measure the SoS in the mid-portion of the Achilles tendon in ten healthy males and ten females (mean age: 33.8 years, range 23-56 yrs; height: 1.73±0.08 m; weight: 68.4±15.3 kg). The emitter and receivers were held at fixed positions by a polyethylene frame and maintained in close contact with the skin overlying the tendon by means of elasticated straps. Repeated SoS measurements were taken with the subject prone (non-weightbearing and relaxed Achilles tendon) and during quiet bipedal and unipedal stance. In each instance, the device was detached and repositioned prior to measurement. Results: Limits of agreement for repeated SoS measures during non-weightbearing and bipedal and unipedal stance were ±53, ±28 and ±21 m/s, respectively. The average SoS in the non-weightbearing Achilles tendon was 1804±198 m/s. There was a significant increase in the average SoS during bilateral (2122±135 m/s) (P < 0.05) and unilateral (2221±79 m/s) stance (P < 0.05). Conclusions: Repeated SoS measures in human Achilles tendon were more reliable during stance than under non-weightbearing conditions. These findings are consistent with previous research in equine tendon in which lower variability in SoS was observed with increasing tensile load (Crevier-Denoix et al, 2009). Since the limits of agreement for Achilles tendon SoS are nearly 5% of the changes previously observed during walking and therapeutic heel raise exercises, acoustic wave transmission provides a promising new non-invasive method for determining tendon properties during sports and rehabilitation related activities.
Resumo:
Global Navigation Satellite Systems (GNSS)-based observation systems can provide high precision positioning and navigation solutions in real time, in the order of subcentimetre if we make use of carrier phase measurements in the differential mode and deal with all the bias and noise terms well. However, these carrier phase measurements are ambiguous due to unknown, integer numbers of cycles. One key challenge in the differential carrier phase mode is to fix the integer ambiguities correctly. On the other hand, in the safety of life or liability-critical applications, such as for vehicle safety positioning and aviation, not only is high accuracy required, but also the reliability requirement is important. This PhD research studies to achieve high reliability for ambiguity resolution (AR) in a multi-GNSS environment. GNSS ambiguity estimation and validation problems are the focus of the research effort. Particularly, we study the case of multiple constellations that include initial to full operations of foreseeable Galileo, GLONASS and Compass and QZSS navigation systems from next few years to the end of the decade. Since real observation data is only available from GPS and GLONASS systems, the simulation method named Virtual Galileo Constellation (VGC) is applied to generate observational data from another constellation in the data analysis. In addition, both full ambiguity resolution (FAR) and partial ambiguity resolution (PAR) algorithms are used in processing single and dual constellation data. Firstly, a brief overview of related work on AR methods and reliability theory is given. Next, a modified inverse integer Cholesky decorrelation method and its performance on AR are presented. Subsequently, a new measure of decorrelation performance called orthogonality defect is introduced and compared with other measures. Furthermore, a new AR scheme considering the ambiguity validation requirement in the control of the search space size is proposed to improve the search efficiency. With respect to the reliability of AR, we also discuss the computation of the ambiguity success rate (ASR) and confirm that the success rate computed with the integer bootstrapping method is quite a sharp approximation to the actual integer least-squares (ILS) method success rate. The advantages of multi-GNSS constellations are examined in terms of the PAR technique involving the predefined ASR. Finally, a novel satellite selection algorithm for reliable ambiguity resolution called SARA is developed. In summary, the study demonstrats that when the ASR is close to one, the reliability of AR can be guaranteed and the ambiguity validation is effective. The work then focuses on new strategies to improve the ASR, including a partial ambiguity resolution procedure with a predefined success rate and a novel satellite selection strategy with a high success rate. The proposed strategies bring significant benefits of multi-GNSS signals to real-time high precision and high reliability positioning services.
Resumo:
In this paper we analyse the effects of highway traffic flow parameters like vehicle arrival rate and density on the performance of Amplify and Forward (AF) cooperative vehicular networks along a multi-lane highway under free flow state. We derive analytical expressions for connectivity performance and verify them with Monte-Carlo simulations. When AF cooperative relaying is employed together with Maximum Ratio Combining (MRC) at the receivers the average route error rate shows 10-20 fold improvement compared to direct communication. A 4-8 fold increase in maximum number of traversable hops can also be observed at different vehicle densities when AF cooperative communication is used to strengthen communication routes. However the theorical upper bound of maximum number of hops promises higher performance gains.
Resumo:
Using a sociological approach, this study examines China’s reform of open educational resources (OER), which has prompted significant changes to the nation’s higher education sector. Through an analysis of the policy processes that have driven the reform, this study demonstrates that the reform has involved and brought significant changes to its participants as resource administrators, providers, and receivers. By using governmentality as a poststructuralist analytical framework, this study shows the particular ways in which the reform process has been governed and the ways in which the governing practices have changed the conduct of higher education. The study reveals the power relations exercised through the reform and offers a critique of China’s higher education sector.
Resumo:
In many applications, where encrypted traffic flows from an open (public) domain to a protected (private) domain, there exists a gateway that bridges the two domains and faithfully forwards the incoming traffic to the receiver. We observe that indistinguishability against (adaptive) chosen-ciphertext attacks (IND-CCA), which is a mandatory goal in face of active attacks in a public domain, can be essentially relaxed to indistinguishability against chosen-plaintext attacks (IND-CPA) for ciphertexts once they pass the gateway that acts as an IND-CCA/CPA filter by first checking the validity of an incoming IND-CCA ciphertext, then transforming it (if valid) into an IND-CPA ciphertext, and forwarding the latter to the recipient in the private domain. “Non-trivial filtering'' can result in reduced decryption costs on the receivers' side. We identify a class of encryption schemes with publicly verifiable ciphertexts that admit generic constructions of (non-trivial) IND-CCA/CPA filters. These schemes are characterized by existence of public algorithms that can distinguish between valid and invalid ciphertexts. To this end, we formally define (non-trivial) public verifiability of ciphertexts for general encryption schemes, key encapsulation mechanisms, and hybrid encryption schemes, encompassing public-key, identity-based, and tag-based encryption flavours. We further analyze the security impact of public verifiability and discuss generic transformations and concrete constructions that enjoy this property.
Resumo:
Reliability of carrier phase ambiguity resolution (AR) of an integer least-squares (ILS) problem depends on ambiguity success rate (ASR), which in practice can be well approximated by the success probability of integer bootstrapping solutions. With the current GPS constellation, sufficiently high ASR of geometry-based model can only be achievable at certain percentage of time. As a result, high reliability of AR cannot be assured by the single constellation. In the event of dual constellations system (DCS), for example, GPS and Beidou, which provide more satellites in view, users can expect significant performance benefits such as AR reliability and high precision positioning solutions. Simply using all the satellites in view for AR and positioning is a straightforward solution, but does not necessarily lead to high reliability as it is hoped. The paper presents an alternative approach that selects a subset of the visible satellites to achieve a higher reliability performance of the AR solutions in a multi-GNSS environment, instead of using all the satellites. Traditionally, satellite selection algorithms are mostly based on the position dilution of precision (PDOP) in order to meet accuracy requirements. In this contribution, some reliability criteria are introduced for GNSS satellite selection, and a novel satellite selection algorithm for reliable ambiguity resolution (SARA) is developed. The SARA algorithm allows receivers to select a subset of satellites for achieving high ASR such as above 0.99. Numerical results from a simulated dual constellation cases show that with the SARA procedure, the percentages of ASR values in excess of 0.99 and the percentages of ratio-test values passing the threshold 3 are both higher than those directly using all satellites in view, particularly in the case of dual-constellation, the percentages of ASRs (>0.99) and ratio-test values (>3) could be as high as 98.0 and 98.5 % respectively, compared to 18.1 and 25.0 % without satellite selection process. It is also worth noting that the implementation of SARA is simple and the computation time is low, which can be applied in most real-time data processing applications.
Resumo:
In this paper, an integrated inter-vehicles wireless communications and positioning system supporting alternate positioning techniques is proposed to meet the requirements of safety applications of Cooperative Intelligent Transportation Systems (C-ITS). Recent advances have repeatedly demonstrated that road safety problems can be to a large extent addressed via a range of technologies including wireless communications and positioning in vehicular environments. The novel communication stack utilizing a dedicated frequency spectrum (e.g. at 5.9 GHz band), known as Dedicated Short-Range Communications (DSRC), has been particularly designed for Wireless Access in Vehicular Environments (WAVE) to support safety applications in highly dynamic environments. Global Navigation Satellite Systems (GNSS) is another essential enabler to support safety on rail and roads. Although current vehicle navigation systems such as single frequency Global Positioning System (GPS) receivers can provide route guidance with 5-10 meters (road-level) position accuracy, positioning systems utilized in C-ITS must provide position solutions with lane-level and even in-lane-level accuracies based on the requirements of safety applications. This article reviews the issues and technical approaches that are involved in designing a vehicular safety communications and positioning architecture; it also provides technological solutions to further improve vehicular safety by integrating the DSRC and GNSS-based positioning technologies.