867 resultados para GREENHOUSE GASES


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spatial and temporal distribution of vegetation net primary production (NPP) in China was studied using three light-use efficiency models (CASA, GLOPEM and GEOLUE) and two mechanistic ecological process models (CEVSA, GEOPRO). Based on spatial and temporal analysis (e.g. monthly, seasonally and annually) of simulated results from ecological process mechanism models of CASA, GLOPEM and CEVSA, the following conclusions could be made: (1) during the last 20 years, NPP change in China followed closely the seasonal change of climate affected by monsoon with an overall trend of increasing; (2) simulated average seasonal NPP was: 0.571 +/- 0.2 GtC in spring, 1.573 +/- 0.4 GtC in summer, 0.6 +/- 0.2 GtC in autumn, and 0.12 +/- 0.1 GtC in winter. Average annual NPP in China was 2.864 +/- 1 GtC. All the five models were able to simulate seasonal and spatial features of biomass for different ecological types in China. This paper provides a baseline for China's total biomass production. It also offers a means of estimating the NPP change due to afforestation, reforestation, conservation and other human activities and could aid people in using for-mentioned carbon sinks to fulfill China's commitment of reducing greenhouse gases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relationship between monthly sea-level data measured at stations located along the Chinese coast and concurrent large-scale atmospheric forcing in the period 1960-1990 is examined. It is found that sea-level varies quite coherently along the whole coast, despite the geographical extension of the station set. A canonical correlation analysis between sea-level and sea-level pressure (SLP) indicates that a great part of the sea-level variability can be explained by the action of the wind stress on the ocean surface. The relationship between sea-level and sea-level pressure is analyzed separately for the summer and winter half-years. In winter, one factor affecting sea-level variability at all stations is the SLP contrast between the continent and the Pacific Ocean, hence the intensity of the winter Monsoon circulation. Another factor that affects coherently all stations is the intensity of the zonal circulation at mid-latitudes. In the summer half year, on the other hand, the influence of SLP on sea-level is spatially less coherent: the stations in the Yellow Sea are affected by a more localized circulation anomaly pattern, whereas the rest of the stations is more directly connected to the intensity of the zonal circulation. Based on this analysis, statistical models (different for summer and winter) to hindcast coastal sealevel anomalies from the large-scale SLP field are formulated. These models have been tested by fitting their internal parameters in a test period and reproducing reasonably the sea-level evolution in an independent period. These statistical models are also used to estimate the contribution of the changes of the atmospheric circulation on sea-level along the Chinese coast in an altered climate. For this purpose the ouput of 150 year-long experiment with the coupled ocean-atmosphere model ECHAM1-LSG has been analyzed, in which the atmospheric concentration of greenhouse gases was continuously increased from 1940 until 2090, according to the Scenario A projection of the Intergovermental Panel on Climate Change. In this experiment the meridional (zonal) circulation relevant for sea-level tends to become weaker (stronger) in the winter half year and stronger (weaker) in summer. The estimated contribution of this atmospheric circulation changes to coastal sea-level is of the order of a few centimeters at the end of the integration, being in winter negative in the Yellow Sea and positive in the China Sea with opposite signs in the summer half-year.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To assess the impact of livestock grazing on the emission of greenhouse gases from grazed wetlands, we examined biomass growth of plants, CO2 and CH4 fluxes under grazing and non-grazing conditions on the Qinghai-Tibetan Plateau wetland. After the grazing treatment for a period of about 3 months, net ecosystem CO2 uptake and aboveground biomass were significantly smaller, but ecosystem CH4 emissions were remarkably greater, under grazing conditions than under non-grazing conditions. Examination of the gas-transport system showed that the increased CH4 emissions resulted from mainly the increase of conductance in the gas-transport system of the grazed plants. The sum of global warming potential, which was estimated from the measured CO2 and CH4 fluxes, was 5.6- to 11.3-fold higher under grazing conditions than under non-grazing conditions. The results suggest that livestock grazing may increase the global warming potential of the alpine wetlands. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Widespread black chert-shales occur in the Ediacaran-Cambrian(E-C) boundary successions along the flank of Yangtze Platform, South China, remarkable changes in sedimentology, geochemistry and biology were recorded. Although extensive studies were carried out upon this boundary succession, the origin of black chert-shales still remain controversial. This paper focuses on the E-C black chert-shales in western Hunan, South China, upon which detailed depositional and geochemical changes are documented, accordingly a depositional model for black chert-shales is proposed. Stratigraphic anatomy across the depositional strike demonstrates that the shallow-water Dengying dolostone along the platform margin sharply pass basinward into the Liuchapo chert successions, which indicate syndepositional extensional faulting at depth could have occurred along the platform margin. The deep-water Niutitang phosphorite-rich black shales are either underlain by the Dengying dolostones on the platform margin toward platform interior or directly by the Liuchaopo chert successions farther basinwards. By detailed investigation, silica chimneys are firsly identified approximately in the chert along platform margin; two types of silica chimneys, including mounded and splayed/funnelized chert(generally brecciated) bodies are further sorted out. The mounded chert are exitbited by domed or hummocky surfaces on the top and irregular spongy to digitiform internal fabrics; within the silica mounds, abundant original vesicles/voids and/or channels were mostly plugged by initial chalcedony, quartze crystals with minor dolomite and bladed barite crystals. Splayed/funnelized brecciated chert “intrusion” cross-cut the uppermost dolostones capping to the horizon underneath, and are directly overlain by the Niutitang phosphorite-rich black shales. Their similarities to the silica chimneys reported from the oceanic spreading centres suggest a similar origin responsible for these unique silica bodies which is also supported by the microthermonmetric data and element geochemistry. High P, Ba, Fe contents and positive correlation between Fe and TOC concentrations in the Niutitang black shales indicate a high palaeo-productivity in the Early Cambrian ocean. The low Th/U and the high V/Cr, V/Sc, V/(V+Ni) ratios in the black shales suggest an anoxic water condition during this interval. Furthermore, Positive Eu anomalies and high Ba contents in the sediments also imply a hydrothermal influence on the formation of Niutitang black shales. To better constrain the placement of deep-water successions straddling the E-C boundary and the timing of hydrothermal silica chimneys, sensitive high-resoluton ion microprobe(SHRIMP) U-Pb dating of zircon grains from tuffs within the chert succession of Liuchapo Formation at Ganziping was conducted and yields a weighted-mean 206Pb/238Pb age at 536.6±5.5Ma, younger than E-C boundary age(542.0±0.3Ma). This age combined with carbon isotopic data is then proposed to correspond to the U-Pb age of zircons(538.2±1.5Ma) from the Zhongyicun member of Meishucun Formation at Meishucun in eastern Yunna, thus, the E-C boundary in Gazngziping was placed between the Dengying formations and Liuchapo formatioms. therefore, the silica chimneys took place at the beginning of the Cambrian period. The temporal coincidence of silica chimneys and negative excursions of δ13C and δ34Spy pairs suggest hydrothermal activities were likely responsible for the isotopic changes. Under such a circumstance, vast amounts of greenhouse gases(CO2, CH4, H2S), with highly 13C-depleted carbon and 34S-depleted sulfur would be released into the ocean and atmosphere. A positive shift in δ34Scas and Δ34S values from the late Ediacaran to the Early Cambrian could be a reflection of enhanced bacterial sulfate reduction(BSR), strengthened by the intensified oceanic anoxia stimulated by hydrothermal activities. Based on the analyses of sedimentology and geochemistry, a model- “oceanic anoxia induced by hydrothermal–volcanic activies” was proposed to responsible for the formation of black chert-shales during this E-C transition. Under this case, hydrothermal-volcanic activies could release large large amount of greenhouse into atmosphere and metal micronutrients into the ocean, which may lead to global warming, stratified ocean, thereby a high palaeoproductivity; on the other hand, the massive releasing of reduced hydrothermal fluids with abundant H2S, could have in turn enhanced the ocean anoxia. All of these were favourable the for preservation of organic matter, and subsequent extensive deposition of black silica-shales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Scientists have paid much attention to the greenhouse effects and the greenhouse gases for the fact of global warming. There are many uncertainties in the prediction of future climatic change. One of the important reasons causing the uncertainties is insufficient researches of the sources and sinks of greenhouse gases, especially, there is a missing sink in the global carbon cycle. The recent researches proposal that there may be an important carbon sink in the middle-latitude terrestrial ecosystems (vegetation and soil) in the North Hemisphere, despite that there is much disputation about its position and amplitude. Chinese loess is located in the middle latitude area in the North Hemisphere, what kind of role does it play in and how does it influence on the balance of the global greenhouse gases budget? For this reason, many samples were taken and analyzed from wide range and multi-stratum of Chinese loess to understand characteristics of major greenhouse gases in loess and loess possible effect on global greenhouse gas budget. Using self-made spiral corer, we totally took 81 gas samples and 65 soil samples from 7 loess profiles in China such as Zhaitang loess section of Beijing, Pianguan, Xingxian, Lishi, Puxian, Jishan loess section of Shanxi Province, and Luochuan loess section of Shaanxi Province. The gas concentrations for CO_2, CH_4 and N_2O, the contents of N_2, O_2 and carbonate, and the carbon isotopic compositions of CO_2 and carbonate in loess strata sequences are observed and measured. In addition, 19 gas samples data of the Weinan loess section, Shaanxi Province are combination with this research to study characteristics of greenhouse gases in loess. This research indicates that (1) the free gases in loess are neither paleo-atmospheric gases nor modern atmospheric gases; (2) the concentrations of CO_2, CH_4 and N_2O in loess are higher than atmospheric level; (3) the δ~(13)C of loess CO_2 shows that the CO_2 in loess mainly comes from the oxygenolysis of organic matters, but because of isotopic exchange with carbonate in loess, the carbon isotopic exchange with carbonate in loess, the carbon isotopic compositions of loess CO_2 are much more heavier than organic original CO_2; (4) the concentration of CH_4 in Malan loess is lower because it is not favorable for the decomposition of anaerobic bacteria in the Malan Loess; (5) estimation of the total amount of the carbonate in loess reveals that loess is a huge carbon reservoir (about 850PgC). In addition, the impact of the deuterogenic carbonatization during the loess accumulation on the global carbon cycle was discussed, and the preliminary conclusion is that the research work is still not enough to evaluate the effect of loess on the sources and sinks of the anthropogenic CO_2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon is an essential element for life, food and energy. It is also a key element in the greenhouse gases and therefore plays a vital role in climatic changes. The rapid increase in atmospheric concentration of CO_2 over the past 150 years, reaching current concentrations of about 370 ppmv, corresponds with combustion of fossii fuels since the beginning of the industrial age. Conversion of forested land to agricultural use has also redistributed carbon from plants and soils to the atmosphere. These human activities have significantly altered the global carbon cycle. Understanding the consequences of these activities in the coming decades is critical for formulating economic, energy, technology, trade, and security policies that will affect civilization for generations. Under the auspices of the International Geosphere-Biosphere Programme (IGBP), several large international scientific efforts are focused on elucidating the various aspects of the global carbon cycle of the past decade. It is only possible to balance the global carbon cycle for the 1990s if there is net carbon uptake by terrestrial ecosystems of around 2 Pg C/a. There are now some independent, direct evidences for the existence of such a sink. Policymarkers involved in the UN Framework Convention on Climate Change (UN-FCCC) are striving to reach consensuses on a 'safe path' for future emissions, the credible predictions on where and how long the terrestrial sink will either persist at its current level, or grow/decline in the future, are important to advice the policy process. The changes of terrestrial carbon storage depend not only on human activities, but also on biogeochemical and climatological processes and their interaction with the carbon cycles. In this thesis, the climate-induced changes and human-induced changes of carbon storage in China since the past 20,000 years are examined. Based on the data of the soil profiles investigated during China's Second National Soil Survey (1979-1989), the forest biomass measured during China's Fourth National Forest Resource Inventory (1989-1993), the grass biomass investigated during the First National Grassland Resource Survey (1980-1991), and the data collected from a collection of published literatures, the current terrestrial carbon storage in China is estimated to -144.1 Pg C, including -136.8 Pg C in soil and -7.3 Pg C in vegetation. The soil organic (SOC) and inorganic carbon (SIC) storage are -78.2 Pg C and -58.6 Pg C, respectively. In the vegetation reservoir, the forest carbon storage is -5.3 Pg C, and the other of-1.4 Pg C is in the grassland. Under the natural conditions, the SOC, SIC, forest and grassland carbon storage are -85.3 Pg C, -62.6 Pg C, -24.5 Pg C and -5.3 Pg C, respectively. Thus, -29.6 Pg C organic carbon has been lost due to land use with a decrease of -20.6%. At the same time, the SIC storage also has been decreased by -4.0 Pg C (-6.4%). These suggest that human activity has caused significant carbon loss in terrestrial carbon storage of China, especially in the forest ecosystem (-76% loss). Using the Paleocarbon Model (PCM) developed by Wu et al. in this paper, total terrestrial organic carbon storage in China in the Last Glacial Maximum (LGM) was -114.8 Pg C, including -23.1 Pg C in vegetation and -86.7 Pg C in soil. At the Middle Holocene (MH), the vegetation, soil and total carbon were -37.3 Pg C, -93.9 Pg C and -136.0 Pg C, respectively. This implies a gain of-21.2 Pg C in the terrestrial carbon storage from LGM to HM mainly due to the temperature increase. However, a loss of-14.4 Pg C of terrestrial organic carbon occurred in China under the current condition (before 1850) compared with the MH time, mainly due to the precipitation decrease associated with the weakening of the Asian summer monsoon. These results also suggest that the terrestrial ecosystem in China has a substantial potential in the restoration of carbon storage. This might be expected to provide an efficient way to mitigate the greenhouse warming through land management practices. Assuming that half of the carbon loss in the degraded terrestrial ecosystem in current forest and grass areas are restored during the next 50 years or so, the terrestrial ecosystem in China may sequestrate -12.0 Pg of organic carbon from the atmosphere, which represents a considerable offset to the industry's CO2 emission. If the ' Anthropocene' Era will be another climate optimum like MH due to the greenhouse effect, the sequestration would be increased again by -4.3 - 9.0 Pg C in China.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O carvão e outros combustíveis fósseis, continuarão a ser, por décadas, a principal matéria-prima energética para as Centrais Térmicas, não obstante os esforços para, dentro do possível, substituir os combustíveis fósseis por fontes de energia renovável.Tal como está, hoje, bem documentado, a produção de gases com efeito estufa (GEE), designadamente CO2, resulta da combustão dos ditos combustíveis fósseis, sendo que se espera ser possível mitigar substancialmente a emissão de tais gases com a aplicação das chamadas Tecnologias Limpas do Carvão.Há, pois, necessidade de promover o abatimento do CO2 através de Tecnologias de Emissão Zero ou Tecnologias Livres de Carbono, incluindo designadamente a Captura, o Transporte e a Sequestração geológica de CO2 correspondentes ao que é costume designar por Tecnologias CAC (Captação e Armazenamento de Carbono). De facto, tais tecnologias e, designadamente, o armazenamento geológico de CO2 são as únicas que, no estado actual do conhecimento, são capazes de permitir que se cumpram as metas do ambicioso programa da EU para a energia e o ambiente conhecido por “20 20 para 2020” em conjugação com os aspectos económicos das directivas relativas ao Comércio Europeu de Licenças de Emissão – CELE (Directivas 2003/87/EC, 2004/101/EC e 2009/29/EC).A importância do tema está, aliás, bem demonstrada com o facto da Comissão Europeia ter formalmente admitido que as metas supracitadas serão impossíveis de atingir sem Sequestração Geológica de CO2. Esta é, pois, uma das razões de ter sido recentemente publicada a Directiva Europeia 2009/31/EC de 23 de Abril de 2009 expressamente dedicada ao tema do Armazenamento Geológico de CO2.Ora, a questão do armazenamento geológico de CO2 implica, para além das Tecnologias CAC acima mencionadas e da sua viabilização em termos tanto técnicos como económicos, ou seja, neste último aspecto, competitiva com o sistema CELE, também o conhecimento, da percepção pública sobre o assunto. Isto é, a praticabilidade das Tecnologias CAC implica que se conheça a opinião pública sobre o tema e, naturalmente, que face a esta realidade se prestem os esclarecimentos necessários como, aliás, é reconhecido na própria Directiva Europeia 2009/31/EC.Dado que a Fundação Fernando Pessoa / Universidade Fernando Pessoa através do seu Centro de Investigação em Alterações Globais, Energia, Ambiente e Bioengenharia – CIAGEB tem ultimado um Projecto de Engenharia relativo à Sequestração Geológica de CO2 nos Carvões (Metantracites) da Bacia Carbonífera do Douro – o Projecto COSEQ, preocupou-se naturalmente, desde o início, com o lançamento de inquéritos de percepção da opinião pública sobre o assunto.Tal implicou, nesta fase, a tradução para português e o lançamento do inquérito europeu ACCSEPT que não tinha sido ainda formalmente lançado de forma generalizada entre nós. Antes, porém, de lançar publicamente tal inquérito – o que está actualmente já em curso – resolveu-se testar o método de lançamento, a recolha de dados e o seu tratamento com uma amostra correspondente ao que se designou por Comunidade Fernando Pessoa, i.e. o conjunto de docentes, discentes, funcionários e outras pessoas relacionadas com a Universidade Fernando Pessoa (cerca de 5000 individualidades).Este trabalho diz, precisamente, respeito à preparação, lançamento e análise dos resultados do dito inquérito Europeu ACCSEPT a nível da Comunidade Fernando Pessoa. Foram recebidas 525 respostas representando 10,5% da amostra. A análise de resultados foi sistematicamente comparada com os obtidos nos outros países europeus, através do projecto ACCSEPT e, bem assim, com os resultados obtidos num inquérito homólogo lançado no Brasil. The use of coal, and other fossil fuels, will remain for decades as the main source of energy for power generation, despite the important efforts made to replace, as far as possible, fossil fuels with renewable power sources.As is well documented, the production of Greenhouse Gases (GHG), mainly CO2, arises primarily from the combustion of fossil fuels. The increasing application of Clean Coal Technologies-CCTs, is expected to mitigate substantially against the emission of such gases.There is consequently a need to promote the CO2 abatement through Zero Emission (Carbon Free) Technologies - ZETs, which includes CO2 capture, transport and geological storage, i.e. the so-called CCS (Carbon, Capture and Storage) technologies. In fact, these technologies are the only ones that are presently able to conform to the ambitious EU targets set out under the “20 20 by 2020” EU energy and environment programme, jointly with the economic aspects of the EU Directives 2003/87/EC, 2004/101/EC and 2009/29/EC concerned with the Greenhouse Gas Emissions Allowance Trading Scheme – ETS scheme. The European Commission formal admission that the referred targets will be impossible to reach without the implementation and contribution of geological storage clearly demonstrate the importance of this particular issue, and for this reason the EC Directive 2009/31/EC of April 23, 2009 on Geological Storage of CO2 was recently published.In considering the technical and economical viabilities of CCS technologies, the latter in competition with the ETS scheme, it is believed that public perception will dictate the success of the development and implementation of CO2 geological storage at a large industrial level. This means that, in order to successfully implement CCS technologies, not only must public opinion be taken into consideration but objective information must also be provided to the public in order to raise subject awareness, as recognized in the referred Directive 2009/31/EC.In this context, the Fernando Pessoa Foundation / University Fernando Pessoa, through its CIAGEB (Global Change, Energy, Environment and Bioengineering) RDID&D Unit, is the sponsor of an Engineering Project for the Geological Sequestration of CO2 in Douro Coalfield Meta-anthracites - the COSEQ Project, and is therefore also engaged in public perception surveys with regards to CCS technologies.At this stage, the original European ACCSEPT inquiry was translated to Portuguese and submitted only to the “Fernando Pessoa Community” - comprising university lecturers, students, other employees, as well as, former students and persons that have a professional or academic relationship with the university (c. 5000 individuals). The results obtained from this first inquiry will be used to improve the survey informatics system in terms of communication, database, and data treatment prior to resubmission of the inquiry to the Portuguese public at large.The present publication summarizes the process and the results obtained from the ACCSEPT survey distributed to the “Fernando Pessoa Community”. 525 replies, representing 10.5% of the sample, have been received and analysed. The assessment of the results was systematically compared with those obtained from other European Countries, as reported by the ACCSEPT inquiry, as well as with those from an identical inquiry launched in Brazil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Workshop on Energy Greenhouse Gases & Environment, Porto, 2008

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The end products of atmospheric degradation are not only CO2 and H2O but also sulfate and nitrate depending on the chemical composition of the substances which are subject to degradation processes. Atmospheric degradation has thus a direct influence on the radiative balance of the earth not only due to formation of greenhouse gases but also of aerosols. Aerosols of a diameter of 0.1 to 2 micrometer, reflect short wave sunlight very efficiently leading to a radiative forcing which is estimated to be about -0.8 watt per m2 by IPCC. Aerosols also influence the radiative balance by way of cloud formation. If more aerosols are present, clouds are formed with more and smaller droplets and these clouds have a higher albedo and are more stable compared to clouds with larger droplets. Not only sulfate, but also nitrate and polar organic compounds, formed as intermediates in degradation processes, contribute to this direct and indirect aerosol effect. Estimates for the Netherlands indicate a direct effect of -4 watt m-2 and an indirect effect of as large as -5 watt m-2. About one third is caused by sulfates, one third by nitrates and last third by polar organic compounds. This large radiative forcing is obviously non-uniform and depends on local conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper provides an exhaustive review of critical issues in the design of climate mitigation policy by pulling together key findings and controversies from diverse literatures on mitigation costs, damage valuation, policy instrument choice, technological innovation, and international climate policy. We begin with the broadest issue of how high assessments suggest the near and medium term price on greenhouse gases would need to be, both under cost-effective stabilization of global climate and under net benefit maximization or Pigouvian emissions pricing. The remainder of the paper focuses on the appropriate scope of regulation, issues in policy instrument choice, complementary technology policy, and international policy architectures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evaluating environmental policies, such as the mitigation of greenhouse gases, frequently requires balancing near-term mitigation costs against long-term environmental benefits. Conventional approaches to valuing such investments hold interest rates constant, but the authors contend that there is a real degree of uncertainty in future interest rates. This leads to a higher valuation of future benefits relative to conventional methods that ignore interest rate uncertainty.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

© 2014, Springer-Verlag Berlin Heidelberg.The frequency and severity of extreme events are tightly associated with the variance of precipitation. As climate warms, the acceleration in hydrological cycle is likely to enhance the variance of precipitation across the globe. However, due to the lack of an effective analysis method, the mechanisms responsible for the changes of precipitation variance are poorly understood, especially on regional scales. Our study fills this gap by formulating a variance partition algorithm, which explicitly quantifies the contributions of atmospheric thermodynamics (specific humidity) and dynamics (wind) to the changes in regional-scale precipitation variance. Taking Southeastern (SE) United States (US) summer precipitation as an example, the algorithm is applied to the simulations of current and future climate by phase 5 of Coupled Model Intercomparison Project (CMIP5) models. The analysis suggests that compared to observations, most CMIP5 models (~60 %) tend to underestimate the summer precipitation variance over the SE US during the 1950–1999, primarily due to the errors in the modeled dynamic processes (i.e. large-scale circulation). Among the 18 CMIP5 models analyzed in this study, six of them reasonably simulate SE US summer precipitation variance in the twentieth century and the underlying physical processes; these models are thus applied for mechanistic study of future changes in SE US summer precipitation variance. In the future, the six models collectively project an intensification of SE US summer precipitation variance, resulting from the combined effects of atmospheric thermodynamics and dynamics. Between them, the latter plays a more important role. Specifically, thermodynamics results in more frequent and intensified wet summers, but does not contribute to the projected increase in the frequency and intensity of dry summers. In contrast, atmospheric dynamics explains the projected enhancement in both wet and dry summers, indicating its importance in understanding future climate change over the SE US. The results suggest that the intensified SE US summer precipitation variance is not a purely thermodynamic response to greenhouse gases forcing, and cannot be explained without the contribution of atmospheric dynamics. Our analysis provides important insights to understand the mechanisms of SE US summer precipitation variance change. The algorithm formulated in this study can be easily applied to other regions and seasons to systematically explore the mechanisms responsible for the changes in precipitation extremes in a warming climate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Advances in technologies for extracting oil and gas from shale formations have dramatically increased U.S. production of natural gas. As production expands domestically and abroad, natural gas prices will be lower than without shale gas. Lower prices have two main effects: increasing overall energy consumption, and encouraging substitution away from sources such as coal, nuclear, renewables, and electricity. We examine the evidence and analyze modeling projections to understand how these two dynamics affect greenhouse gas emissions. Most evidence indicates that natural gas as a substitute for coal in electricity production, gasoline in transport, and electricity in buildings decreases greenhouse gases, although as an electricity substitute this depends on the electricity mix displaced. Modeling suggests that absent substantial policy changes, increased natural gas production slightly increases overall energy use, more substantially encourages fuel-switching, and that the combined effect slightly alters economy wide GHG emissions; whether the net effect is a slight decrease or increase depends on modeling assumptions including upstream methane emissions. Our main conclusions are that natural gas can help reduce GHG emissions, but in the absence of targeted climate policy measures, it will not substantially change the course of global GHG concentrations. Abundant natural gas can, however, help reduce the costs of achieving GHG reduction goals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oceans contribute significantly to the global emissions of a number of atmospherically important volatile gases, notably those containing sulfur, nitrogen and halogens. Such gases play critical roles not only in global biogeochemical cycling but also in a wide range of atmospheric processes including marine aerosol formation and modification, tropospheric ozone formation and destruction, photooxidant cycling and stratospheric ozone loss. A number of marine emissions are greenhouse gases, others influence the Earth's radiative budget indirectly through aerosol formation and/or by modifying oxidant levels and thus changing the atmospheric lifetime of gases such as methane. In this article we review current literature concerning the physical, chemical and biological controls on the sea-air emissions of a wide range of gases including dimethyl sulphide (DMS), halocarbons, nitrogen-containing gases including ammonia (NH3), amines (including dimethylamine, DMA, and diethylamine, DEA), alkyl nitrates (RONO2) and nitrous oxide (N2O), non-methane hydrocarbons (NMHC) including isoprene and oxygenated (O)VOCs, methane (CH4) and carbon monoxide (CO). Where possible we review the current global emission budgets of these gases as well as known mechanisms for their formation and loss in the surface ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Jerry Blackford of the Plymouth Marine Laboratory leads the UK Research Council funded Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage (QICS) program, and is a founding member of the new UK CCS Research Centre leading the environment research team. Here he talks to Muriel Cozier about how the world's first experiment to simulate a CO2 leak from underground storage in a marine environment will go a long way toward improving our understanding of a series of complex interactions.