958 resultados para GRAM-NEGATIVE BACILLI
Resumo:
Peptides constitute the largest group of Hymenoptera venom toxins; some of them interact with GPCR, being involved with the activation of different types of leukocytes, smooth muscle contraction and neurotoxicity. Most of these toxins vary from dodecapeptides to tetradecapeptides, amidated at their C-teminal amino acid residue. The venoms of social wasps can also contains some tetra-, penta-, hexa- and hepta-peptides, but just a few of them have been structurally and functionally characterized up to now. Protonectin (ILG-TILGLLKGL-NH(2)) is a polyfunctional peptide, presenting mast cell degranulation, release of lactate dehydrogenase (LDH) from mast cells, antibiosis against Gram-positive and Gram-negative bacteria and chemotaxis for polymorphonucleated leukocytes (PMNL), while Protonectin (1-6) (ILGTIL-NH(2)) only presents chemotaxis for PMNL However, the mixture of Protonectin (1-6) with Protonectin in the molar ratio of 1:1 seems to potentiate the biological activities dependent of the membrane perturbation caused by Protonectin, as observed in the increasing of the activities of mast cell degranulation, LDH releasing from mast cells, and antibiosis. Despite both peptides are able to induce PMNL chemotaxis, the mixture of them presents a reduced activity in comparison to the individual peptides. Apparently, when mixed both peptides seems to form a supra-molecular structure, which interact with the receptors responsible for PMNL chemotaxis, disturbing their individual docking with these receptors. In addition to this, a comparison of the sequences of both peptides suggests that the sequence ILGTIL is conserved, suggesting that it must constitute a linear motif for the structural recognition by the specific receptor which induces leukocytes migration. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A new gold(I) complex with 2-mercaptothiazoline (MTZ) with the coordination formula [AuCN(C(3)H(5)NS(2))] was synthesized and characterized by chemical and spectroscopic measurements, OFT studies and biological assays. Infrared (IR) and (1)H, (13)C and (15)N nuclear magnetic resonance (NMR) spectroscopic measurements indicate coordination of the ligand to gold(I) through the nitrogen atom. Studies based on OFT confirmed nitrogen coordination to gold(I) as a minimum of the potential energy surface with calculations of the hessians showing no imaginary frequencies. Thermal decomposition starts at temperatures near 160 degrees C, leading to the formation of Au as the final residue at 1000 degrees C. The gold(I) complex with 2-mercaptothiazoline (Au-MTZ) is soluble in dimethyl sulfoxide (DMSO), and is insoluble in water, methanol, ethanol, acetonitrile and hexane. The antibacterial activities of the Au-MTZ complex were evaluated by an antibiogram assay using the disc diffusion method. The compound showed an effective antibacterial activity against Staphylococcus aureus (Gram-positive) and Escherichia coli and Pseudomonas aeruginosa (Gram-negative) bacterial cells. Biological analysis for evaluation of the cytotoxic effect of the Au-MTZ complex was performed using HeLa cells derived from human cervical adenocarcinoma. The complex presented a potent cytotoxic activity, inducing 85% of cell death at a concentration of 2.0 mu mol L(-1). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Bordetella pertussis is a gram-negative bacillus that causes the highly contagious disease known as pertussis or whooping cough. Antibody response in children may vary depending on the vaccination schedule and the product used. In this study, we have analyzed the antibody response of cellular pertussis vaccinated children against B. pertussis strains and their virulence factors, such as pertussis toxin, pertactin, and filamentous hemagglutinin. After the completion of the immunization process, according to the Brazilian vaccination program, children serum samples were collected at different periods of time, and tested for the presence of specific antibodies and antigenic cross-reactivity. Results obtained show that children immunized with three doses of the Brazilian whole-cell pertussis vaccine present high levels of serum antibodies capable of recognizing the majority of the components present in vaccinal and non-vaccinal B. pertussis strains and their virulence factors for at least 2 years after the completion of the immunization procedure.
Resumo:
There isn`t definitive and consistent data concerning the distribution of bacterial species in patients with Chronic Sinusitis (CS). The variability of the results from studies in CS may be due to the different techniques used as collection method, variations in culture methods, previous antibiotic use, and difficulty in distinguishing bacterial flora from pathogenic agents. Study design: Clinical prospective. Aim: To identify the incidence of microorganisms in patients with CRS by growing bacteria from the secretion of the maxillary sinus. Patients and Methods: Cross-sectional study in 62 patients that had undergone FESS for treatment of chronic sinusitis; cultures from the maxillary sinus were obtained. Results: 62 samples, 33 (53.2%) had no growth; 29 (45.2%) counts of aerobic bacteria; one case (1.6%) of fungus growth; we did not find anaerobic bacteria. Pseudomonas aeruginosa was the one more frequently found - 8 samples (27.6%), Staphylococcus aureus and Staphylococcus epidermidis in 4 samples each; Streptococcus pneumoniae in 3 samples (10.4%); other Gram negative agents in 17 samples (31%). Conclusion: In the present study we concluded that Pseudomonas aeruginosa, other Gram negatives bacteria and Staphylococcus spp were the representatives of the bacterial flora found in the paranasal sinuses of patients with CS.
Resumo:
The aim of the present study was to evaluate the antimicrobial and cytotoxic activity of the ethanolic extract of S. cumini according to the Clinical and Laboratory Standards Institute reference method (with modifications), determining the minimal inhibitory and lethal concentration. Activity against Gram-positive (Staphylococcus aureus and S. epidermidis), Gram-negative (Pseudomonas aeruginosa) and yeast of Candida sp and Cryptococcus neoformans was evaluated. The effects of the fruit extract were examined in hamster cells ovaries in concentrations ranging from 1250.0 a 4.9 mu g/ml, measuring the reduction of the tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-tetrazolium. The extract showed both bactericidal and fungicidal activity among the various microorganisms tested and the MIC ranging from 7.8 to 250 mu g/ml. The MIC, MBC and MFC should values that were similar for all the microorganisms. Cytotoxicity index of the dried extract corresponded to the concentration of 400 mu g/ml. The extract could potentially be used in topical antimicrobial products. Thus, the activity of extract was potent to bacteria and mainly to non-albicans species and C. neoformans.
Resumo:
Leptospirosis is a zoonosis of multisystem involvement caused by pathogenic strains of the genus Leptospira. In the last few years, intensive studies aimed at the development of a vaccine have provided important knowledge about the nature of the immunological mechanisms of the host. The purpose of this study was to analyze the immune responses to two recombinant proteins, MPL17 and MPL21 (encoded by the genes LIC10765 and LIC13131, respectively) of Leptospira interrogans serovar Copenhageni in individuals during infection. The recombinant proteins were expressed in Escherichia coli as six-His tag fusion proteins and were purified from the soluble bacterial fraction by affinity chromatography with Ni2+ -charged resin. The recombinant proteins were used to evaluate their ability to bind to immunoglobulin G (IgG) (and IgG subclass) or IgM antibodies in serum samples from patients in the early and convalescent phases of leptospirosis (n = 52) by enzyme-linked immunosorbent assays. The prevalences of total IgG antibodies against MPL17 and MPL21 were 38.5% and 21.2%, respectively. The titers achieved with MPL17 were statistically significantly higher than those obtained by the reference microscopic agglutination test. The specificity of the assay was estimated to be 95.5% for MPL17 and 80.6% for MPL21 when serum samples from individuals with unrelated febrile diseases and control healthy donors were tested. The proteins are conserved among Leptospira strains that cause human and animal diseases. MPL17 and MPL21 are most likely new surface proteins of leptospires, as revealed by liquid-phase immunofluorescence assays with living organisms. Our results demonstrate that these recombinant proteins are highly immunogenic and, when they are used together, might be useful as a means of diagnosing leptospirosis.
Resumo:
Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease that affects populations worldwide. We have identified in proteomic studies a protein that is encoded by the gene LIC10314 and expressed in virulent strain of L. interrogans serovar Pomona. This protein was predicted to be surface exposed by PSORT program and contains a p83/100 domain identified by BLAST analysis that is conserved in protein antigens of several strains of Borrelia and Treponema spp. The proteins containing this domain have been claimed antigen candidates for serodiagnosis of Lyme borreliosis. Thus, we have cloned the LIC10314 and expressed the protein in Escherichia coli BL21-SI strain by using the expression vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and characterized by circular dichroism spectroscopy. This protein is conserved among several species of pathogenic Leptospira and absent in the saprophytic strain L. biflexa. We confirm by liquid-phase immunofluorescence assays with living organisms that this protein is most likely a new surface leptospiral protein. The ability of the protein to mediate attachment to ECM components was evaluated by binding assays. The leptospiral protein encoded by LIC10314, named Lsa63 (Leptospiral surface adhesin of 63 kDa), binds strongly to laminin and collagen IV in a dose-dependent and saturable fashion. In addition, Lsa63 is probably expressed during infection since it was recognized by antibodies of serum samples of confirmed-leptospirosis patients in convalescent phase of the disease. Altogether, the data suggests that this novel identified surface protein may be involved in leptospiral pathogenesis. (C) 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives: The study of a predicted outer membrane leptospiral protein encoded by the gene LIC12690 in mediating the adhesion process. Methods: The gene was cloned and expressed in Escherichia coli BL21 (SI) strain by using the expression vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and used to assess its ability to activate human umbilical vein endothelial cells (HUVECs). Results: The recombinant leptospiral protein of 95 kDa, named Lp95, activated E-selectin in a dose-dependent fashion but not the intercellular adhesion molecule 1 (ICAM-1). In addition, we show that pathogenic and non-pathogenic Leptospira are both capable to stimulate endothelium E-selectin and ICAM-1, but the pathogenic L. interrogans serovar Copenhageni strain promotes a statistically significant higher activation than the non-pathogenic L. biflexa serovar Patoc (P < 0.01). The Lp95 was identified in vivo in the renal tubules of animal during experimental infection with L. interrogans. The whole Lp95 as well as its fragments, the C-terminal containing the domain of unknown function (DUF), the N-terminal and the central overlap regions bind laminin and fibronectin ECM molecules, being the binding stronger with the DUF containing fragment. Conclusion: This is the first leptospiral protein capable to mediate the adhesion to ECM components and the activation of HUVECS, thus suggesting its participation in the pathogenesis of Leptospira. (C) 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Pathogenic Leptospira is the aetiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. The search for novel antigens that could be relevant in host-pathogen interactions is being pursued. These antigens have the potential to elicit several activities, including adhesion. This study focused on a hypothetical predicted lipoprotein of Leptospira, encoded by the gene LIC12895, thought to mediate attachment to extracellular matrix (ECM) components. The gene was cloned and expressed in Escherichia coli BL21 Star (DE3)pLys by using the expression vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and characterized by circular dichroism spectroscopy. The capacity of the protein to mediate attachment to ECM components was evaluated by binding assays. The leptospiral protein encoded by LIC12895, named Lsa27 (leptospiral surface adhesin, 27 kDa), bound strongly to laminin in a dose-dependent and saturable fashion. Moreover, Lsa27 was recognized by antibodies from serum samples of confirmed leptospirosis specimens in both the initial and the convalescent phases of the disease. Lsa27 is most likely a surface protein of Leptospira as revealed in liquid-phase immunofluorescence assays with living organisms. Taken together, these data indicate that this newly identified membrane protein is expressed during natural infection and may play a role in mediating adhesion of L. interrogans to its host.
Resumo:
In rabbit ligated ileal loops, two atypical enteropathogenic Escherichia coli (aEPEC) strains, 3991-1 and 0421-1, intimately associated with the cell membrane, forming the characteristic EPEC attachment and effacement lesion of the brush border, induced a mucous hypersecretion, whereas typical EPEC (tEPEC) strain E2348/69 did not. Using cultured human mucin-secreting intestinal HT29-MTX cells, we demonstrate that apically aEPEC infection is followed by increased production of secreted MUC2 and MUC5AC mucins and membrane-bound MUC3 and MUC4 mucins. The transcription of the MUC5AC and MUC4 genes was transiently upregulated after aEPEC infection. We provide evidence that the apically adhering aEPEC cells exploit the mucins` increased production since they grew in the presence of membrane-bound mucins, whereas tEPEC did not. The data described herein report a putative new virulence phenomenon in aEPEC.
Resumo:
Objective: Aggregatibacter actinomycetemcomitans is an oral Gram-negative bacterium that contributes to periodontitis progression. Isolated antigens from A. actinomycetemcomitans could be activating innate immune cells through Toll-like receptors (TLRs). In this study, we evaluated the role of TLR4 in the control of A. actinomycetemcomitans infection. Material and Methods: We examined the mechanisms that modulate the outcome of A. actinomycetemcomitans-induced periodontal disease in TLR4(-/-) mice. The production of cytokines was evaluated by ELISA. The bacterial load was determined by counting the number of colony-forming units per gram of tissue. Results: The results showed that TLR4-deficient mice developed less severe periodontitis after A. actinomycetemcomitans infection, characterized by significantly lower bone loss and inflammatory cell migration to periodontal tissues. However, the absence of TLR4 facilitated the A. actinomycetemcomitans dissemination. Myeloperoxidase activity was diminished in the periodontal tissue of TLR4(-/-) mice. We observed a significant reduction in the production of tumour necrosis factor-alpha (TNF-alpha) and interleukin (IL)-1 beta in the periodontal tissue of TLR4(-/-) mice. Conclusion: The results of this study highlighted the role of TLR4 in controlling A. actinomycetemcomitans infection.
Resumo:
Background: Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans) is a Gram-negative bacterium present in the oral cavity and is usually associated with localized aggressive periodontitis. Isolated antigens from A. actinomycetemcomitans can activate innate immune cells through Toll-like receptors (TLRs), which are molecules that recognize structural components conserved among microorganisms. In this study, we evaluate the role of TLR2 in the recognition of A. actinomycetemcomitans. Methods: Macrophages and neutrophils from knockout mice with targeted disruption of TLR2 (TLR2(-/-) mice) and wild-type mice were collected and used for the subsequent assays. The production of cytokines and chemokines was evaluated by enzyme-linked immunosorbent assay (ELISA), and the presence of apoptotic cells was determined by flow cytometry. In addition, the mechanisms that modulate the outcome of A. actinomycetemcomitans-induced periodontal disease in TLR2(-/-) mice were examined. Results: The results show that TLR2-deficient mice developed more severe periodontitis after A. actinomycetemcomitans infection, characterized by significantly higher bone loss and inflammatory cell migration to periodontal tissues. The inflammatory cell influx into the peritoneal cavities of TLR2(-/-) mice was three-fold lower than that observed for the littermate controls. A significantly diminished production of the cytokines tumor necrosis factor-alpha and interleukin-1 beta as well as the chemokine CC-ligand-5 in the peritoneal cavities of TLR2(-/-) mice was observed. In addition, a high frequency of apoptotic cells in the inflammatory exudates from TLR2(-/-) mice was observed. Phagocytosis and nitric oxide production was diminished in cells from TLR2(-/-) mice, facilitating the dissemination of the pathogen to the spleen. Conclusion: The results of this study highlight the involvement of TLR2 in recognizing A. actinomycetemcomitans and its essential role in controlling A. actinomycetemcomitans infection. J Periodontot 2009,80:2070-2019.
Resumo:
Chryseobacteria are gram negative organisms, formerly known as Flavobacteria, which rarely cause infections of burn wounds. This article documents three casts of Chryseobacterium infection in burn wounds and adds to the other two cases that have been reported in English literature. Two patients died, with one of the deaths linked to a Chryseobacteria bacteraemia. In two patients, there was an associated history of first aid treatment with untreated water. Patients whose burn wounds are suspected to be infected with Chryseobacterium require wound excision and coverage in combination with antibiotic therapy such as ciprofloxacin, vancomycin and rifampicin. (C) 2001 Elsevier Science Ltd and ISBI. All rights reserved.
Resumo:
Utilizing an in vitro laminitis explant model, we have investigated how bacterial broth cultures and purified bacterial proteases activate matrix metalloproteinases (MMPs) and alter structural integrity of cultured equine lamellar hoof explants. Four Gram-positive Streptococcus spp. and three Gram-negative bacteria all induced a dose-dependent activation of MMP-2 and MMP-9 and caused lamellar explants to separate. MMP activation was deemed to have occurred if a specific MMP inhibitor, batimastat, blocked MMP activity and prevented lamellar separation. Thermolysin and streptococcal pyrogenic exotoxin B (SpeB) both separated explants dose-dependently but only thermolysin was inhibitable by batimastat or induced MMP activation equivalent to that seen with bacterial broths. Additionally, thermolysin and broth MMP activation appeared to be cell dependent as MMP activation did not occur in isolation. These results suggest the rapid increase in streptococcal species in the caecum and colon observed in parallel with carbohydrate induced equine laminitis may directly cause laminitis via production of exotoxin(s) capable of activating resident MMPs within the lamellar structure. Once activated, these MMPs can degrade key components of the basement membrane (BM) hemidesmosome complex, ultimately separating the BM from the epidermal basal cells resulting in the characteristic laminitis histopathology of hoof lamellae. While many different causative agents have been evaluated in the past, the results of this study provide a unifying aetiological mechanism for the development of carbohydrate induced equine laminitis. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The phototrophic purple non-sulfur bacterium Rhodobacter capsulatus expresses a wide variety of complex redox proteins in response to changing environmental conditions. Here we report the construction and evaluation of an expression system for recombinant proteins in that organism which makes use of the dor promoter from the same organism. A generic expression vector, pDorEX, was constructed and used to express sulphite:cytochrome c oxidoreductase from Starkeya novella, a heterodimeric protein containing both molybdenum and haem c. The recombinant protein was secreted to the periplasm and its biochemical properties were very similar to those of the native enzyme. The pDorEX system therefore seems to be potentially useful for heterologous expression of multi-subunit proteins containing complex redox cofactors. (C) 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.