990 resultados para GOLD MINIGRID ELECTRODE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical reactions of cytochrome c were studied at a thiophene-modified gold electrode. It was demonstrated that thiophene is an effective promoter, although there is only one functional group in the molecule. Based on this result, the mechanis

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A glassy carbon electrode (GCE) modified with palladium provides excellent electrocatalytic oxidation of hydrogen peroxide. When the electrolyte contains palladium chloride and glucose oxidase, the GCE can be modified by electrochemical codeposition at a given potential. The resulting modified surface was coated with a thin film of Nation to form a glucose sensor. Such a glucose sensor was successfully used in the flow-injection analysis of glucose with high stability and anti-poisoning ability. It gave a detection limit of 1 X 10(-7) M injected glucose, with a linear concentration range of 0.001-8 mM. There is no obvious interference from substances such as ascorbate and saccharides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigation of the redox thermodynamics of horse heart cytochrome c at bare glassy carbon electrodes has been performed using cyclic voltammetry with a nonisothermal electrochemical cell. The thermodynamic parameters of the electron-transfer reaction of cytochrome c have been estimated in different component buffer solutions. The change DELTAS(re)-degrees in reaction center entropy and the formal potential E-degrees' (at 25-degrees-C, vs. standard hydrogen electrode (SHE)) for cytochrome c are found to be -64.1 J K-1 mol-1 and 0.251 V in phosphate buffer, -64.8 J K-1 mol-1 and 0.257 V in Tris + HCl buffer, -65.6 J K-1 mol-1 and 0.261 V in Tris+CH3COOH buffer (pH 7.0, ionic strength 100 mM). The temperature dependence of the formal potential obtained in phosphate buffer with or without NaCl in the range 5-55-degrees-C shows biphase characteristics in an alkaline solution with an intersection point at ca. 44-degrees-C or 42-degrees-C, which should be due to a structural change in the protein moiety of cytochrome c. However, in acidic and neutral solutions only a monotonic relationship between E-degrees' and temperature is observed. The effect of the buffer component on E-degrees' for cytochrome c is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemically polymerized azure A film electrode is reported. The resulting film on a platinum electrode surface was analyzed with electron spectroscopy for chemical analysis (ESCA). The heterogeneous electron transfer processes of hemoglobin at the polymerized azure A film electrode have been investigated using in situ UV-visible spectroelectrochemistry. The formal potential (E-degrees') and electron transfer number (n) of hemoglobin were calculated as E = 0.088 V versus NHE (standard deviation +/- 0.5, N = 4) and n = 1.8 (standard deviation +/- 0.5, N = 4). Exhaustive reduction and oxidation electrolysis are achieved in 80 and 380 seconds, respectively, during a potential step between -0.3 and +0.3 V. A formal heterogeneous electron-transfer rate constant (k(sh)) of 3.54(+/- 0.12) X 10(-6) cm/s and a transfer coefficient (alpha) of 0.28(+/- 0.01) were obtained by cyclic voltabsorptometry, which indicated that the poly-azure A film electrode is able to catalyze the direct reduction and oxidation of hemoglobin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new liquid chromatography electrochemical (LCEC) scheme for glucose sensing has been developed on the basis of a Prussian Blue chemically modified electrode (CME) of novel construction and characterized in terms of various experimental parameters by the flow injection analysis (FIA) technique. Unique hydrodynamic voltammograms were obtained for the first time at the CME in the flow-through amperometric detection of glucose, and subsequently both anodic and cathodic peaks could be expected on monitoring the operating potential in the modest positive or negative region. The unique pH dependence on the CME response towards glucose makes it perfectly compatible with conventional reversed phase liquid chromatography systems. On the basis of these features, practical application in glucose LCEC detection has been effectively performed; a linear response range over three orders of magnitude and a detection limit of subpicomole level were readily obtained. The capability of the established LCEC mode in the direct sensing of urinary glucose has been demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A copper-based chemically-modified electrode has been constructed and characterized by various experimental parameters in flow-through amperometric detection of carboxylic acids and phenolic acids. Novel hydrodynamic voltamperograms were first obtained in flow-through amperometric detection with the Cu-based CME and subsequently negative and positive peaks were observed in a single chromatogram. This unique and flexible potential dependence could be of great benefit in chromatographic speciation and quantification. These observations suggest that the detector response was governed by the complexation reaction of copper ions with the solutes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research work in this thesis included the sensitive and selective separation of biological substance by capillary electrophoresis with a boron doped diamond electrode for amperometric detection. Chapter 1 introduced the capillary electrophoresis and electrochemical detection. It included the different modes of capillary electrophoresis, polyelectrolyte multilayers coating for open tubular capillary electrochromatography, different modes of electrochemical detection and carbon based electrodes. Chapter 2 showed the synthesized and electropolymerized N-acetyltyramine with a negatively charged sulfobutylether-β-cyclodextrin on a boron doped diamond (BDD) electrode followed by the electropolymerzation of pyrrole to form a stable and permselective film for selective dopamine detection. For comparison, a glassy carbon (GC) electrode with a combined electropolymerized permselective film of polytyramine and polypyrrole-1-propionic acid was used for selective detection of dopamine. The detection limit of dopamine was improved from 100 nM at a GC electrode to 5 nM at a BDD electrode. Chapter 3 showed field-amplified sample stacking using a fused silica capillary coated with gold nanoparticles embedded in poly(diallyldimethylammonium) chloride, which has been investigated for the electrophoretic separation of indoxyl sulphate, homovanillic acid and vanillylmandelic acid. The detection limit of the three analytes obtained by using a boron doped diamond electrode was around 75 nM, which was significantly below their normal physiological levels in biological fluids. This combined separation and detection scheme was applied to the direct analysis of these analytes and other interfereing chemicals including uric and ascorbic acids in urine samples without off-line sample treatment or preconcentration. Chapter 4 showed the selective detection of Pseudomonas Quinolone Signal, PQS for quorum sensing from its precursor HHQ, using a simply boron doped diamond electrode. Furthermore, by combining poly(diallyldimethylammonium) chloride modified fused silica capillary with a BDD electrode for amperometric detection, PQS was separated from HHQ and other analogues. The detection limit of PQS was as low as 65 nM. Different P. aeruginosa mutant strains were studied. Chapter 5 showed the separation of aminothiols by layer-by-layer coating of silica capillary with a boron doped diamond electrode. The capillary was layer-by-layer coated with the polycation poly(diallyldimethylammonium) chloride and negatively charged silica nanoparticles. All the aminothiols was separated and detected using a BDD electrode in an acidic electrolyte. It was a novel scheme for the separation and detection of glutathione reduced and oxidized forms, which is important for estimated overstressed level in the human system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis a novel theory of electrocatalysis at metal (especially noble metal)/solution interfaces was developed based on the assumption of metal adatom/incipient hydrous oxide cyclic redox transitions. Adatoms are considered as metastable, low coverage species that oxidise in-situ at potentials of often significantly cathodic to the regular metal/metal oxide transition. Because the adatom coverage is so low the electrochemical or spectroscopic response for oxidation is frequently overlooked; however, the product of such oxidation, referred to here as incipient hydrous oxide seems to be the important mediator in a wide variety of electrocatalytically demanding oxidation processes. Conversely, electrocatalytically demanding reductions apparently occur only at adatom sites at the metal/solution interface - such reactions generally occur only at potentials below, i.e. more cathodic than, the adatom/hydrous oxide transition. It was established that while silver in base oxidises in a regular manner (forming initially OHads species) at potentials above 1.0 V (RHE), there is a minor redox transition at much lower potentials, ca. o.35 v (RHE). The latter process is assumed to an adatom/hydrous oxide transition and the low coverage Ag(l) hydrous oxide (or hydroxide) species was shown to trigger or mediate the oxidation of aldehydes, e. g. HCHO. The results of a study of this system were shown to be in good agreement with a kinetic model based on the above assumptions; the similarity between this type of behaviour and enzyme-catalysed processes - both systems involve interfacial active sites - was pointed out. Similar behaviour was established for gold where both Au(l) and Au(lll) hydrous oxide mediators were shown to be the effective oxidants for different organic species. One of the most active electrocatalytic materials known at the present time is platinum. While the classical view of this high activity is based on the concept of activated chemisorption (and the important role of the latter is not discounted here) a vital role is attributed to the adatom/hydrous oxide transition. It was suggested that the well known intermediate (or anomalous) peak in the hydrogen region of the cyclic voltanmogram for platinum region is in fact due to an adatom/hydrous oxide transition. Using potential stepping procedures to minimise the effect of deactivating (COads) species, it was shown that the onset (anodic sweep) and termination (cathodic sweep) potential for the oxidation of a wide variety of organics coincided with the potential for the intermediate peak. The converse was also shown to apply; sluggish reduction reactions, that involve interaction with metal adatoms, occur at significant rates only in the region below the hydrous oxide/adatom transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In developing a biosensor, the utmost important aspects that need to be emphasized are the specificity and selectivity of the transducer. These two vital prerequisites are of paramount in ensuring a robust and reliable biosensor. Improvements in electrochemical sensors can be achieved by using microelectrodes and to modify the electrode surface (using chemical or biological recognition layers to improve the sensitivity and selectivity). The fabrication and characterisations of silicon-based and glass-based gold microelectrode arrays with various geometries (band and disc) and dimension (ranging from 10 μm-100 nm) were reported. It was found that silicon-based transducers of 10 μm gold microelectrode array exhibited the most stable and reproducible electrochemical measurements hence this dimension was selected for further study. Chemical electrodeposition on both 10 μm microband and microdisc were found viable by electro-assisted self-assembled sol-gel silica film and nanoporous-gold electrodeposition respectively. The fabrication and characterisations of on-chip electrochemical cell was also reported with a fixed diameter/width dimension and interspacing variation. With this regard, the 10 μm microelectrode array with interspacing distance of 100 μm exhibited the best electrochemical response. Surface functionalisations on single chip of planar gold macroelectrodes were also studied for the immobilisation of histidine-tagged protein and antibody. Imaging techniques such as atomic force microscopy, fluorescent microscopy or scanning electron microscope were employed to complement the electrochemical characterisations. The long-chain thiol of self-assembled monolayer with NTA-metal ligand coordination was selected for the histidine-tagged protein while silanisation technique was selected for the antibody immobilisation. The final part of the thesis described the development of a T-2 labelless immunosensor using impedimetric approach. Good antibody calibration curve was obtained for both 10 μm microband and 10 μm microdisc array. For the establishment of the T-2/HT-2 toxin calibration curve, it was found that larger microdisc array dimension was required to produce better calibration curve. The calibration curves established in buffer solution show that the microelectrode arrays were sensitive and able to detect levels of T-2/HT-2 toxin as low as 25 ppb (25 μg kg-1) with a limit of quantitation of 4.89 ppb for a 10 μm microband array and 1.53 ppb for the 40 μm microdisc array.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The description of the monolayer formed at Au(1 1 1) by 2-mercaptobenzimidazole (MBI) under potential control has been based on electrochemical data (charge measurements) and spectroscopic information from the subtractively normalized interfacial Fourier transform infrared spectroscopy method (SNIFTIRS). From the quantitative analysis of the SNIFTIR spectra, a surface coverage Γ/Γmax was extracted for each sample potential. The evolution of the coverage with potential was in full agreement with the charge density curve. The shift of the pzc in the presence of MBI indicates that the adsorbed molecules have a nonzero component of the permanent dipole moment in the direction perpendicular to the electrode surface. Thanks to the high quality of the spectra, it was possible to determine the orientation of MBI molecules at the surface in the monolayer and submonolayer range. The angle between the C2-axis of the molecule and the direction normal to the surface is close to 64 ± 4° and its small change (<15°) with potential indicates that the orientation of the molecules is chiefly controlled by the chemical interaction between the sulphur atom and the gold surface. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the first time, the electrochemistry of gold has been studied in detail in a 'second-generation', non-haloaluminate, ionic liquid. In particular, the electrochemical behaviour of Na[AuCl4] has been investigated in 1-butyl-3-methylimidazolium bis{(tifluoromethyl)sulfonyl} imide, [C(4)mim][NTf2], over gold, platinum and glassy carbon working electrodes. The reduction of [AuCl4](-) initially forms [AuCl2](-) before deposition on the electrode as Au(0). To enable stripping of deposited gold or electrodissolution of bulk gold, the presence of chloride, trichloride or chlorine is required. Specifically trichloride and chlorine have been identified as the active species which preferentially form Au(I) and Au(III), respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an effort to develop a novel electronic paper image display technology based on the electrowetting principle, a 3-D electrowetting cell is designed and fabricated, which consists of two 3-D bent electrodes, each having a horizontal surface made of gold and a vertical surface made of indium tin oxide (ITO) glass as a color display window, a layer of dielectric material on the 3-D electrodes, and a highly fluorinated hydrophobic layer on the surface of the dielectric layer. Results of this work show that an electrowetting-induced motion of an aqueous droplet in immiscible oils can be achieved reversibly across the boundary of the horizontal and vertical surfaces of the 3-D electrode surface. It is also shown that the droplet can maintain its wetting state on a vertical sidewall electrode free of a power supplier when the voltage is removed. This phenomenon may form the basis for color contrast modulation applications, where a power-free image display is required, such as electronic paper display technology in the future. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3100201]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of anodic stripping voltammetry (ASV)has been proven in the past to be a precise and sensitive analytical method with an excellent limit of detection. Electrochemical sensors could help to avoid expensive and time consuming procedures as sample taking and storage and provide a both sensitive and reliable method for the direct monitoring of heavy metals in the aquatic environment. Solid electrodes which have been used in this work, were produced using previously developed methods. Commercially available and newly designed, screen printed carbon and gold plated working electrodes (WE) were compared. Good results were achieved with the screen printed and plated electrodes under conditions optimized for each electrode material. The electrode stability, reproducibility of single measurements and the limit of detection obtained for Pb were satisfactory (3*10-6mol/l on screen printed carbon WEs after 60 s of deposition and 6*10-6 mol/l on gold plated WEs after 5 min of deposition). Complete 3-electrode-sets (counter, reference and working electrode) were screen printed on different substrates (glass, polycarbonate and alumina). Also here, both carbon and gold were used as WE. Using 3-electrode-sets with a gold plated WE on glass was a limit of detection of 7*10-7 mol/l was achieved after only 60 s of deposition.