972 resultados para GENETIC-ANALYSIS
Resumo:
The Brazilian Association of Simmental and Simbrasil Cattle Farmers provided 29,510 records from 10,659 Simmental beef cattle; these were used to estimate (co)variance components and genetic parameters for weights in the growth trajectory, based on multi-trait (MTM) and random regression models (RRM). The (co)variance components and genetic parameters were estimated by restricted maximum likelihood. In the MTM analysis, the likelihood ratio test was used to determine the significance of random effects included in the model and to define the most appropriate model. All random effects were significant and included in the final model. In the RRM analysis, different adjustments of polynomial orders were compared for 5 different criteria to choose the best fit model. An RRM of third order for the direct additive genetic, direct permanent environmental, maternal additive genetic, and maternal permanent environment effects was sufficient to model variance structures in the growth trajectory of the animals. The (co)variance components were generally similar in MTM and RRM. Direct heritabilities of MTM were slightly lower than RRM and varied from 0.04 to 0.42 and 0.16 to 0.45, respectively. Additive direct correlations were mostly positive and of high magnitude, being highest at closest ages. Considering the results and that pre-adjustment of the weights to standard ages is not required, RRM is recommended for genetic evaluation of Simmental beef cattle in Brazil. ©FUNPEC-RP.
Resumo:
The synaptonemal complex (SC) was analyzed in four F1 hybrids of Bos taurus taurus and B. taurus indicus including Gyr-Simmental (G-S), Nelore Simmental (N-S), Gyr-Holstein-Friesian (G-H) and Nelore-Piemontese (N-P). We analysed the frequency of various types of SC abnormalities and the frequency of cells with SC abnormalities. The results were compared with similar observations made on purebred animals. All the animals studied possessed 29 autosomal and one sex bivalent. The frequency of cells with abnormalities in the hybrids were 28.0% in the N-P, 29.1% in the G-S, 33.3% in the N-S and 40.0% in the G-H. The frequency of cells with abnormalities in the four hybrids was 31.5%; 57.9% of these abnormalities occurred in zygotene and 42.0% occurred in pachytene. The comparisons among the hybrids and among the hybrids and their parental breeds showed that the only significant difference was between Gyr and Gyr-Holstein-Friesian animals. Some aspects of the relationship between the frequency of cells with anomalies and the fertility of hybrids are discussed.
Resumo:
The objective of this study was to describe the genetic diversity and structure of the largest Pe-duro population by assessing variation at ten autosomal microsatellite (STR) loci and mitochondrial DNA (mtDNA) sequences. The mean expected heterozygosity was 0.755, the mean observed heterozygosity was 0.600 and significant inbreeding coefficient (Fis) and deviations from the Hardy-Weinberg equilibrium in most of analyzed loci demonstrate the impact of inbreeding and homozygosis on this population. A more in-depth genetic analysis could be achieved by expanding the STR list. The analysis of mtDNA provided evidence of ancestral African taurine haplotypes in Pe-duro and excluded maternal Zebuine introgression. In this report, the main Pe-duro population is genetically portrayed by sampling approximately 40% of it. As this herd represents the core of the Pe-duro conservation program, these findings are of outstanding value for the management and preservation of this Brazilian 'native' cattle breed.
Resumo:
Background: The purpose of this study was to estimate the genetic influences on the initiation of cigarette smoking, the persistence, quantity and age-at-onset of regular cigarette use in Brazilian families. Methods: The data set consisted of 1,694 individuals enrolled in the Baependi Heart Study. The heritability and the heterogeneity in genetic and environmental variance components by gender were estimated from variance components approaches, using the SOLAR (Sequential Oligogenic Linkage Analysis Routines) computer package. The mixed-effects Cox model was used for the genetic analysis of the age-at onset of regular cigarette use. Results: The heritability estimates were high (> 50%) for smoking initiation and were intermediate, ranging from 23.4 to 31.9%, for smoking persistence and quantity. Significant evidence for heterogeneity in variance components by gender was observed for smoking initiation and age-at-onset of regular cigarette use. Genetic factors play an important role in the interindividual variation of these phenotypes in females, while in males there is a predominant environmental component, which could be explained by greater social influences in the initiation of tobacco use. Conclusions: Significant heritabilities were observed in smoking phenotypes for both males and females from the Brazilian population. These data add to the literature and are concordant with the notion of significant biological determination in smoking behavior. Samples from the Baependi Heart Study may be valuable for the mapping of genetic loci that modulate this complex biological trait.
Resumo:
CD40 ligand (CD40L) deficiency or X-linked hyper-IgM syndrome (X-HIGM) is a well-described primary immunodeficiency in which Pneumocystis jiroveci pneumonia is a common clinical feature. We have identified an unusual high incidence of fungal infections and other not yet described infections in a cohort of 11 X-HIGM patients from nine unrelated Brazilian families. Among these, we describe the first case of paracoccidioidomycosis (PCM) in X-HIGM. The molecular genetic analysis of CD40L was performed by gene sequencing and evaluation of CD40L protein expression. Nine of these 11 patients (82%) had fungal infections. These included fungal species common to CD40L deficiency (P. jiroveci and Candida albicans) as well as Paracoccidioides brasiliensis. One patient presented with PCM at age 11 years and is now doing well at 18 years of age. Additionally, one patient presented with a simultaneous infection with Klebsiella and Acinetobacter, and one with condyloma caused by human papilloma virus. Molecular analysis revealed four previously described CD40L mutations, two novel missense mutations (c.433 T>G and c.476 G>C) resulting in the absence of CD40L protein expression by activated CD4(+) cells and one novel insertion (c.484_485insAA) within the TNFH domain leading to a frame shift and premature stop codon. These observations demonstrated that the susceptibility to fungal infections in X-HIGM extends beyond those typically associated with X-HIGM (P. jiroveci and C. albicans) and that these patients need to be monitored for those pathogens.
Resumo:
Abstract Background The database of sugarcane expressed sequence tags (EST) offers a great opportunity for developing molecular markers that are directly associated with important agronomic traits. The development of new EST-SSR markers represents an important tool for genetic analysis. In sugarcane breeding programs, functional markers can be used to accelerate the process and select important agronomic traits, especially in the mapping of quantitative traits loci (QTL) and plant resistant pathogens or qualitative resistance loci (QRL). The aim of this work was to develop new simple sequence repeat (SSR) markers in sugarcane using the sugarcane expressed sequence tag (SUCEST database). Findings A total of 365 EST-SSR molecular markers with trinucleotide motifs were developed and evaluated in a collection of 18 genotypes of sugarcane (15 varieties and 3 species). In total, 287 of the EST-SSRs markers amplified fragments of the expected size and were polymorphic in the analyzed sugarcane varieties. The number of alleles ranged from 2-18, with an average of 6 alleles per locus, while polymorphism information content values ranged from 0.21-0.92, with an average of 0.69. The discrimination power was high for the majority of the EST-SSRs, with an average value of 0.80. Among the markers characterized in this study some have particular interest, those that are related to bacterial defense responses, generation of precursor metabolites and energy and those involved in carbohydrate metabolic process. Conclusions These EST-SSR markers presented in this work can be efficiently used for genetic mapping studies of segregating sugarcane populations. The high Polymorphism Information Content (PIC) and Discriminant Power (DP) presented facilitate the QTL identification and marker-assisted selection due the association with functional regions of the genome became an important tool for the sugarcane breeding program.
Resumo:
The objective of this study was to describe the genetic diversity and structure of the largest Pé-duro population by assessing variation at ten autosomal microsatellite (STR) loci and mitochondrial DNA (mtDNA) sequences. The mean expected heterozygosity was 0.755, the mean observed heterozygosity was 0.600 and significant inbreeding coefficient (Fis) and deviations from the Hardy-Weinberg equilibrium in most of analyzed loci demonstrate the impact of inbreeding and homozygosis on this population. A more in-depth genetic analysis could be achieved by expanding the STR list. The analysis of mtDNA provided evidence of ancestral African taurine haplotypes in Pé-duro and excluded maternal Zebuine introgression. In this report, the main Pé-duro population is genetically portrayed by sampling approximately 40% of it. As this herd represents the core of the Pé-duro conservation program, these findings are of outstanding value for the management and preservation of this Brazilian 'native' cattle breed.
Resumo:
The characteristic features of Whipple's disease include abdominal pain, diarrhoea, wasting, and arthralgias, with the causative agent, Tropheryma whipplei, being detected mainly in intestinal biopsies. PCR technology has led to the identification of T. whipplei in specimens from various other locations, including the central nervous system and the heart. T. whipplei is now recognized as one of the causes of culture-negative endocarditis, and endocarditis can be the only manifestation of the infection with T. whipplei. Although it is considered a rare disease, the true incidence of endocarditis due to T. whipplei is not clearly established. With the increasing use of molecular methods, it is likely that T. whipplei will be more frequently identified. Questions also remain about the genetic variability of T. whipplei strains, optimal diagnostic procedures and therapeutic options. In the present study, we provide clinical data on four new patients with documented endocarditis due to T. whipplei in the context of the available published literature. There was no clinical involvement of the gastrointestinal tract. Genetic analysis of the T. whipplei strains with DNA isolated from the excised heart valves revealed little to no genetic variability. In a selected case, we describe acridine orange staining for early detection of the disease, prompting early adaptation of the antibiotic therapy. We provide long-term follow-up data on the patients. In our hands, an initial 2-week course of intravenous antibiotics followed by cotrimoxazole for at least 1 year was a suitable treatment option for T. whipplei endocarditis.
Resumo:
The embryonic head development, including the formation of dental structures, is a complex and delicate process guided by specific genetic programs. Genetic changes and environmental factors can disturb the execution of these programs and result in abnormalities in orofacial and dental structures. Orofacial clefts and hypodontia/ oligodontia are examples of such abnormalities frequently seen in dental clinics. An insight into the mechanisms and genes involved in the formation of orofacial and dental structures has been gradually gained by genetic analysis of families and by the use of experimental vertebrate models such as the mouse and chick models. The development of novel clinical therapies for orofacial and dental pathological conditions depends very much on a detailed knowledge of the molecular and cellular processes that are involved in head formation.
Resumo:
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare autosomal recessive disorder in which a nuclear mutation of the thymidine phosphorylase (TP) gene causes mitochondrial genomic dysfunction. Patients suffer from gastrointestinal dysmotility, cachexia, ptosis, external ophthalmoparesis, myopathy and polyneuropathy. Magnetic resonance imaging (MRI) shows leukoencephalopathy. We describe clinical, genetic and neuroradiological features of three brothers affected with MNGIE. Clinical examination, laboratory analyses, MRI and magnetic resonance spectroscopy (MRS) of the brain, and genetic analysis have been performed in all six members of the family with the three patients with MNGIE. Two of them are monozygous twins. They all suffered from gastrointestinal dysmotility, cachexia, ophthalmoplegia, muscular atrophies, and polyneuropathy. Urinary thymidine was elevated in the patients related to the severity of clinical disease, and urinary thymidine (normally not detectable) was also found in a heterozygous carrier. Brain MRI showed leukoencephalopathy in all patients; however, their cognitive functioning was normal. Brain MRS demonstrated reduced N-acetylaspartate and choline in severely affected areas. MRI of heterozygous carriers was normal. A new mutation (T92N) in the TP gene was identified. Urinary thymidine is for the first time reported to be detectable in a heterozygous carrier. MRS findings indicate loss of neurons, axons, and glial cells in patients with MNGIE, but not in heterozygous carriers.
Resumo:
This dissertation has three separate parts: the first part deals with the general pedigree association testing incorporating continuous covariates; the second part deals with the association tests under population stratification using the conditional likelihood tests; the third part deals with the genome-wide association studies based on the real rheumatoid arthritis (RA) disease data sets from Genetic Analysis Workshop 16 (GAW16) problem 1. Many statistical tests are developed to test the linkage and association using either case-control status or phenotype covariates for family data structure, separately. Those univariate analyses might not use all the information coming from the family members in practical studies. On the other hand, the human complex disease do not have a clear inheritance pattern, there might exist the gene interactions or act independently. In part I, the new proposed approach MPDT is focused on how to use both the case control information as well as the phenotype covariates. This approach can be applied to detect multiple marker effects. Based on the two existing popular statistics in family studies for case-control and quantitative traits respectively, the new approach could be used in the simple family structure data set as well as general pedigree structure. The combined statistics are calculated using the two statistics; A permutation procedure is applied for assessing the p-value with adjustment from the Bonferroni for the multiple markers. We use simulation studies to evaluate the type I error rates and the powers of the proposed approach. Our results show that the combined test using both case-control information and phenotype covariates not only has the correct type I error rates but also is more powerful than the other existing methods. For multiple marker interactions, our proposed method is also very powerful. Selective genotyping is an economical strategy in detecting and mapping quantitative trait loci in the genetic dissection of complex disease. When the samples arise from different ethnic groups or an admixture population, all the existing selective genotyping methods may result in spurious association due to different ancestry distributions. The problem can be more serious when the sample size is large, a general requirement to obtain sufficient power to detect modest genetic effects for most complex traits. In part II, I describe a useful strategy in selective genotyping while population stratification is present. Our procedure used a principal component based approach to eliminate any effect of population stratification. The paper evaluates the performance of our procedure using both simulated data from an early study data sets and also the HapMap data sets in a variety of population admixture models generated from empirical data. There are one binary trait and two continuous traits in the rheumatoid arthritis dataset of Problem 1 in the Genetic Analysis Workshop 16 (GAW16): RA status, AntiCCP and IgM. To allow multiple traits, we suggest a set of SNP-level F statistics by the concept of multiple-correlation to measure the genetic association between multiple trait values and SNP-specific genotypic scores and obtain their null distributions. Hereby, we perform 6 genome-wide association analyses using the novel one- and two-stage approaches which are based on single, double and triple traits. Incorporating all these 6 analyses, we successfully validate the SNPs which have been identified to be responsible for rheumatoid arthritis in the literature and detect more disease susceptibility SNPs for follow-up studies in the future. Except for chromosome 13 and 18, each of the others is found to harbour susceptible genetic regions for rheumatoid arthritis or related diseases, i.e., lupus erythematosus. This topic is discussed in part III.
Resumo:
A comprehensive genetic analysis of 60 Mycoplasma sp. bovine group 7 isolates from different geographic origins and epidemiological settings is presented. Twenty-four isolates were recovered from the joints of calves during sporadic episodes of polyarthritis in geographically distinct regions of Queensland and New South Wales, Australia, including two clones of the type strain PG5O. A further three Australian isolates were also recovered from the tympanic bulla, retropharyngeal lymph node and the lung and another three isolates had unconfirmed histories. Six isolates originated from Germany, Portugal, Nigeria, and France. Twenty-four epidemiologically related isolates of Mycoplasma sp. bovine group 7 were recovered from multiple tissue sites and body fluids of infected calves with polyarthritis, mastitic milk, and from the stomach contents, lung and liver from aborted foetuses in three large, centrally managed dairy herds in New South Wales, Australia. Restriction endonuclease analysis (REA) of genomic DNA differentiated 29 Cfol profiles among these 60 isolates and grouped all 24 epidemiologically related isolates in a defined pattern showing a clonal origin. Three isolates of this clonal cluster were recovered from mastitic milk and the synovial exudate of clinically-affected calves and appeared sporadically for periods up to 18 months after the initial outbreak of polyarthritis indicating a persistent, close association of the organism with cattle in these herds. The Cfol profile representative of the clonal cluster was distinguishable from profiles of isolates recovered from multiple, unrelated cases of polyarthritis in Queensland and New South Wales and from other countries. All 24 isolates from the clonal cluster possessed a plasmid (pBG7AU) with a molecular size of 1022 bp. DNA sequence analysis of pBG7AU identified two open reading frames sharing 81 and 99% DNA sequence similarity with hypothetical replication control proteins A and B respectively, previously described in plasmid pADB201 isolated from M. mycoides subspecies mycoides. Other isolates of bovine group 7, epidemiologically unrelated to the clonal cluster, including two clones of the type strain PG5O, possessed a similar-sized plasmid. These data confirm that Mycoplasma sp. bovine group 7 is capable of migrating to, and multiplying within, different tissue sites within a single animal and among different animals within a herd.
Resumo:
The differential diagnosis for children with diabetes includes a group of monogenic diabetic disorders known as maturity-onset diabetes of the young (MODY). So far, six underlying gene defects have been identified. The most common subtypes are caused by mutations in the genes encoding the transcription factor HNF-1a (MODY 3) and the glycolytic enzyme glucokinase (GCK) (MODY 2). MODY 2 is the most benign form of diabetes as the threshold for glucose sensing is elevated resulting in mild, regulated hyperglycemia. MODY 2 may usually be treated with diet alone without risk of microvascular complications. Patients with MODY usually present as children or young adults. Genetic testing for MODY in diabetic subjects is often not performed because of the costs and its unavailability in Switzerland. We describe the impact of the genetic analysis for MODY 2 on diabetes management and treatment costs in a five-year-old girl. The patient and her diabetic mother were both found to have a heterozygous missense mutation (V203A) in the glucokinase gene. The five-year-old girl was started on insulin therapy for her diabetes but because her HbA1c remained between 5.8-6.4% (reference 4.1-5.7%) and her clinical presentation suggested MODY insulin was discontinued. She is now well controlled on a carbohydrate controlled diet regimen only. Omission of insulin treatment made regular blood glucose monitoring unnecessary and removed her risk of hypoglycemia. Costs for the genetic analysis were 500 Euro. At our centre costs for diabetes care of a patient with type 1 diabetes are approximately 2050 Euro/year compared to 410 Euro/year for the care of a patient with MODY 2. In addition, a diagnosis of MODY 2 may reassure patients and their families, as microvascular complications are uncommon. Thus there are both health and financial benefits in diagnosing MODY 2. We recommend genetic testing for MODY 2 in clinically selected patients even though this analysis is currently not available in Switzerland and costs are not necessarily covered by the health insurances.
Resumo:
The ACTH receptor (MC2R) is expressed predominantly in the adrenal cortex, but is one of five G protein-coupled, seven-transmembrane melanocortin receptors (MCRs), all of which bind ACTH to some degree. Testing of MC2R activity is difficult because most cells express endogenous MCRs; hence, ACTH will elicit background activation of assayable reporter systems. Inactivating mutations of MC2R lead to hereditary unresponsiveness to ACTH, also known as familial glucocorticoid deficiency (FGD). These patients are usually seen in early childhood with very low cortisol concentrations, normal mineralocorticoids, hyperpigmentation, and increased bodily growth. Several MC2R mutations have been reported in FGD, but assays of the activities of these mutants are cumbersome. We saw two patients with typical clinical findings of FGD. Genetic analysis showed that patient 1 was homozygous for the mutation R137W, and patient 2 was a compound heterozygote for S74I and Y254C. We tested the activity of these mutations in OS-3 cells, which are unresponsive to ACTH but have intact downstream cAMP signal transduction. OS-3 cells transfected with a cAMP-responsive luciferase reporter plasmid (pCREluc) were unresponsive to ACTH, but cotransfection with a vector expressing human MC2R increased luciferase activity more than 40-fold. Addition of ACTH to cells cotransfected with the pCREluc reporter and wild-type MC2R activated luciferase expression with a 50% effective concentration of 5.5 x 10(-9) M ACTH, which is similar to previously reported values. By contrast, the MC2R mutant R137W had low activity, and the S74I or Y254C mutants elicited no measurable response. This assay provides excellent sensitivity in an easily assayed transient transfection system, providing a more rapid and efficient measurement of ACTH receptor activity.
Resumo:
The Hox gene products are transcription factors involved in specifying regional identity along the anteroposterior body axis. In Drosophila, where these genes are known as HOM-C (Homeotic-complex) genes and where they have been most extensively studied, they are expressed in restricted domains along the anteroposterior axis with different anterior limits. Genetic analysis of a large number of gain- and loss-of-function alleles of these genes has revealed that these genes are important in specifying segmental identity at their anterior limits of expression. Furthermore, there is a functional dominance of posterior genes over anterior genes, such that posterior genes can dominantly specify their developmental programs in spite of the expression of more anterior genes in the same segment. In the mouse, there are four clusters of HOM-C genes, called Hox genes. Thus, there may be up to four genes, called paralogs, that are more highly homologous to each other and to their Drosophila homolog than they are to the other mouse Hox genes. The single mutants for two paralogous genes, hoxa-4 and hoxd-4, presented in this dissertation, are similar to several other mouse Hox mutants in that they show partial, incompletely penetrant homeotic transformations of vertebrae at their anterior limit of expression. These mutants were then bred with hoxb-4 mutants (Ramirez-Solis, et al. 1993) to generate the three possible double mutant combinations as well as the triple mutant. The skeletal phenotypes of these group 4 Hox compound mutants displayed clear alterations in regional identity, such that a nearly complete transformation towards the morphology of the first cervical vertebra occurs. These results suggest a certain degree of functional redundancy among paralogous genes in specifying regional identity. Furthermore, there was a remarkable dose-dependent increase in the number of vertebrae transformed to a first cervical vertebra identity, including the second through the fifth cervical vertebrae in the triple mutant. Thus, these genes are required in a larger anteroposterior domain than is revealed by the single mutant phenotypes alone, such that multiple mutations in these genes result in transformations of vertebrae that are not at their anterior limit of expression. ^