960 resultados para Frontal-parietal coherence
Resumo:
Interaural intensity and time differences (IID and ITD) are two binaural auditory cues for localizing sounds in space. This study investigated the spatio-temporal brain mechanisms for processing and integrating IID and ITD cues in humans. Auditory-evoked potentials were recorded, while subjects passively listened to noise bursts lateralized with IID, ITD or both cues simultaneously, as well as a more frequent centrally presented noise. In a separate psychophysical experiment, subjects actively discriminated lateralized from centrally presented stimuli. IID and ITD cues elicited different electric field topographies starting at approximately 75 ms post-stimulus onset, indicative of the engagement of distinct cortical networks. By contrast, no performance differences were observed between IID and ITD cues during the psychophysical experiment. Subjects did, however, respond significantly faster and more accurately when both cues were presented simultaneously. This performance facilitation exceeded predictions from probability summation, suggestive of interactions in neural processing of IID and ITD cues. Supra-additive neural response interactions as well as topographic modulations were indeed observed approximately 200 ms post-stimulus for the comparison of responses to the simultaneous presentation of both cues with the mean of those to separate IID and ITD cues. Source estimations revealed differential processing of IID and ITD cues initially within superior temporal cortices and also at later stages within temporo-parietal and inferior frontal cortices. Differences were principally in terms of hemispheric lateralization. The collective psychophysical and electrophysiological results support the hypothesis that IID and ITD cues are processed by distinct, but interacting, cortical networks that can in turn facilitate auditory localization.
Resumo:
The 22q11.2 deletion syndrome (22q11DS) is a widely recognized genetic model allowing the study of neuroanatomical biomarkers that underlie the risk for developing schizophrenia. Recent advances in magnetic resonance image analyses enable the examination of structural connectivity integrity, scarcely used in the 22q11DS field. This framework potentially provides evidence for the disconnectivity hypothesis of schizophrenia in this high-risk population. In the present study, we quantify the whole brain white matter connections in 22q11DS using deterministic tractography. Diffusion Tensor Imaging was acquired in 30 affected patients and 30 age- and gender-matched healthy participants. The Human Connectome technique was applied to register white matter streamlines with cortical anatomy. The number of fibers (streamlines) was used as a measure of connectivity for comparison between groups at the global, lobar and regional level. All statistics were corrected for age and gender. Results showed a 10% reduction of the total number of fibers in patients compared to controls. After correcting for this global reduction, preserved connectivity was found within the right frontal and right parietal lobes. The relative increase in the number of fibers was located mainly in the right hemisphere. Conversely, an excessive reduction of connectivity was observed within and between limbic structures. Finally, a disproportionate reduction was shown at the level of fibers connecting the left fronto-temporal regions. We could therefore speculate that the observed disruption to fronto-temporal connectivity in individuals at risk of schizophrenia implies that fronto-temporal disconnectivity, frequently implicated in the pathogenesis of schizophrenia, could precede the onset of symptoms and, as such, constitutes a biomarker of the vulnerability to develop psychosis. On the contrary, connectivity alterations in the limbic lobe play a role in a wide range of psychiatric disorders and therefore seem to be less specific in defining schizophrenia.
Resumo:
Self-consciousness has mostly been approached by philosophical enquiry and not by empirical neuroscientific study, leading to an overabundance of diverging theories and an absence of data-driven theories. Using robotic technology, we achieved specific bodily conflicts and induced predictable changes in a fundamental aspect of self-consciousness by altering where healthy subjects experienced themselves to be (self-location). Functional magnetic resonance imaging revealed that temporo-parietal junction (TPJ) activity reflected experimental changes in self-location that also depended on the first-person perspective due to visuo-tactile and visuo-vestibular conflicts. Moreover, in a large lesion analysis study of neurological patients with a well-defined state of abnormal self-location, brain damage was also localized at TPJ, providing causal evidence that TPJ encodes self-location. Our findings reveal that multisensory integration at the TPJ reflects one of the most fundamental subjective feelings of humans: the feeling of being an entity localized at a position in space and perceiving the world from this position and perspective.
Resumo:
The involvement of the cerebellum in migraine pathophysiology is not well understood. We used a biparametric approach at high-field MRI (3 T) to assess the structural integrity of the cerebellum in 15 migraineurs with aura (MWA), 23 migraineurs without aura (MWoA), and 20 healthy controls (HC). High-resolution T1 relaxation maps were acquired together with magnetization transfer images in order to probe microstructural and myelin integrity. Clusterwise analysis was performed on T1 and magnetization transfer ratio (MTR) maps of the cerebellum of MWA, MWoA, and HC using an ANOVA and a non-parametric clusterwise permutation F test, with age and gender as covariates and correction for familywise error rate. In addition, mean MTR and T1 in frontal regions known to be highly connected to the cerebellum were computed. Clusterwise comparison among groups showed a cluster of lower MTR in the right Crus I of MWoA patients vs. HC and MWA subjects (p = 0.04). Univariate and bivariate analysis on T1 and MTR contrasts showed that MWoA patients had longer T1 and lower MTR in the right and left pars orbitalis compared to MWA (p < 0.01 and 0.05, respectively), but no differences were found with HC. Lower MTR and longer T1 point at a loss of macromolecules and/or micro-edema in Crus I and pars orbitalis in MWoA patients vs. HC and vs. MWA. The pathophysiological implications of these findings are discussed in light of recent literature.
Resumo:
In an uncertain environment, probabilities are key to predicting future events and making adaptive choices. However, little is known about how humans learn such probabilities and where and how they are encoded in the brain, especially when they concern more than two outcomes. During functional magnetic resonance imaging (fMRI), young adults learned the probabilities of uncertain stimuli through repetitive sampling. Stimuli represented payoffs and participants had to predict their occurrence to maximize their earnings. Choices indicated loss and risk aversion but unbiased estimation of probabilities. BOLD response in medial prefrontal cortex and angular gyri increased linearly with the probability of the currently observed stimulus, untainted by its value. Connectivity analyses during rest and task revealed that these regions belonged to the default mode network. The activation of past outcomes in memory is evoked as a possible mechanism to explain the engagement of the default mode network in probability learning. A BOLD response relating to value was detected only at decision time, mainly in striatum. It is concluded that activity in inferior parietal and medial prefrontal cortex reflects the amount of evidence accumulated in favor of competing and uncertain outcomes.
Resumo:
El objetivo de este estudio es describir las alteraciones interictales de perfusión en RM por técnica de arterial spin labelled (ASL) y difusión, en pacientes con epilepsia focal y analizar su posible valor lateralizador/localizador del foco epileptógeno. Se trata de un estudio transversal de 53 pacientes adultos con epilepsia focal diagnosticados por semiología, RM y EEG. En todos ellos se realizó una RM de 3 TESLA con protocolo de epilepsia, que incluía secuencias de ASL. Las imágenes fueron sometidas a un análisis visual por un neurorradiólogo, clasificándolas en alteraciones de perfusión hemisféricas o focales. La muestra tenía un 51% de hombres y una edad media de 42.9 años (±16.5). El 60% tenían epilepsias sintomáticas. El 64% eran fármacorresistentes. Las etiologías más frecuentes fueron vascular (15%), malformaciones del desarrollo cortical (15%) y tumoral (13%). Un 45% se clasificaron como epilepsia temporal, 32% frontal y 13% temporal posterior, 8% occipital y 2% parietal. El 45% presentaban crisis parciales complejas, entre las que la semiología automotora era la más frecuente (36%). El ASL mostró, en un 74% de los pacientes, alteraciones de la perfusión interhemisféricas, observándose un valor lateralizador de éstas, especialmente cuando se observa hiperperfusión en la localización del foco y cuando se trata de epilepsia sintomática. Se observaron alteraciones focales en ASL que a pesar de encontrarse en un bajo porcentaje podrían tener valor localizador del área epileptógena.
Resumo:
Prismatic adaptation has been shown to induce a realignment of visuoproprioceptive representations and to involve parietocerebellar networks. We have investigated in humans how far other types of functions known to involve the parietal cortex are influenced by a brief exposure to prismatic adaptation. Normal subjects underwent an fMRI evaluation before and after a brief session of prismatic adaptation using rightward deviating prisms for one group or after an equivalent session using plain glasses for the other group. Activation patterns to three tasks were analyzed: (1) visual detection; (2) visuospatial short-term memory; and (3) verbal short-term memory. The prismatic adaptation-related changes were found bilaterally in the inferior parietal lobule when prisms, but not plain glasses, were used. This effect was driven by selective changes during the visual detection task: an increase in neural activity was induced on the left and a decrease on the right parietal side after prismatic adaptation. Comparison of activation patterns after prismatic adaptation on the visual detection task demonstrated a significant increase of the ipsilateral field representation in the left inferior parietal lobule and a significant decrease in the right inferior parietal lobule. In conclusion, a brief exposure to prismatic adaptation modulates differently left and right parietal activation during visual detection but not during short-term memory. Furthermore, the visuospatial representation within the inferior parietal lobule changes, with a decrease of the ipsilateral hemifield representation on the right and increase on the left side, suggesting thus a left hemispheric dominance.
Resumo:
A boy with a right congenital hemiparesis due to a left pre-natal middle cerebral artery infarct developed focal epilepsy at 33 months and then an insidious and subsequently more rapid, massive cognitive and behavioural regression with a frontal syndrome between the ages of 4 and 5 years with continuous spike-waves during sleep (CSWS) on the EEG. Both the epilepsy and the CSWS were immediately suppressed by hemispherotomy at the age of 5 years and 4 months. A behavioural-cognitive follow-up prior to hemispherotomy, an per-operative EEG and corticography and serial post-operative neuropsychological assessments were performed until the age of 11 years. The spread of the epileptic activity to the "healthy" frontal region was the cause of the reversible frontal syndrome. A later gradual long-term but incomplete cognitive recovery, with moderate mental disability was documented. This outcome is probably explained by another facet of the epilepsy, namely the structural effects of prolonged epileptic discharges in rapidly developing cerebral networks which are, at the same time undergoing the reorganization imposed by a unilateral early hemispheric lesion. Group studies on the outcome of children before and after hemispherectomy using only single IQ measures, pre- and post-operatively, may miss particular epileptic cognitive dysfunctions as they are likely to be different from case to case. Such detailed and rarely available complementary clinical and EEG data obtained in a single case at different time periods in relation to the epilepsy, including per-operative electrophysiological findings, may help to understand the different cognitive deficits and recovery profiles and the limits of full cognitive recovery.
Resumo:
Introduction : DTI has proven to be an exquisite biomarker of tissue microstructure integrity. This technique has been successfully applied to schizophrenia in showing that fractional anisotropy (FA, a marker of white matter integrity) is diminished in several areas of the brain (Kyriakopoulos M et al (2008)). New ways of representing diffusion data emerged recently and achieved to create structural connectivity maps in healthy brains (Hagmann P et al. (2008)). These maps have the capacity to study alterations over the entire brain at the connection and network level. This is of high interest in complex disconnection diseases like schizophrenia. We report on the specific network alterations of schizophrenic patients. Methods : 13 patients with chronic schizophrenia were recruited from in-patient, day treatment, out-patient clinics. Comparison subjects were recruited and group-matched to patients on age, sex, handedness, and parental social economic-status. This study was approved by the local IRB and subjects had to give informed written consent. They were scanned with a 3T clinical MRI scanner. DTI and high-resolution anatomical T1w imaging were performed during the same session. The path from diffusion MRI to a multi-resolution structural connection matrices of the entire brain is a five steps process that was performed in a similar way as described in Hagmann P et al. (2008). (1) DTI and T1w MRI of the brain, (2) segmentation of white and gray matter, (3) white matter tractography, (4) segmentation of the cortex into 242 ROIs of equal surface area covering the entire cortex (Fig 1), (5) the connection network was constructed by measuring for each ROI to ROI connection the related average FA along the corresponding tract. Results : For every connection between 2 ROIs of the network we tested the hypothesis H0: "average FA along fiber pathway is larger or equal in patients than in controls". H0 was rejected for connections where average FA in a connection was significantly lower in patients than in controls. Threshold p-value was 0.01 corrected for multiple comparisons with false discovery rate. We identified consistently that temporal, occipito-temporal, precuneo-temporal as well as frontal inferior and precuneo-cingulate connections were altered (Fig 2: significant connections in yellow). This is in agreement with the known literature, which showed across several studies that FA is diminished in several areas of the brain. More precisely, abnormalities were reported in the prefrontal and temporal white matter and to some extent also in the parietal and occipital regions. The alterations reported in the literature specifically included the corpus callosum, the arcuate fasciculus and the cingulum bundle, which was the case here as well. In addition small world indexes are significantly reduced in patients (p<0.01) (Fig. 3). Conclusions : Using connectome mapping to characterize differences in structural connectivity between healthy and diseased subjects we were able to show widespread connectional alterations in schizophrenia patients and systematic small worldness decrease, which is a marker of network desorganization. More generally, we described a method that has the capacity to sensitively identify structure alterations in complex disconnection syndromes where lesions are widespread throughout the connectional network.
Resumo:
Pantomimes of object use require accurate representations of movements and a selection of the most task-relevant gestures. Prominent models of praxis, corroborated by functional neuroimaging studies, predict a critical role for left parietal cortices in pantomime and advance that these areas store representations of tool use. In contrast, lesion data points to the involvement of left inferior frontal areas, suggesting that defective selection of movement features is the cause of pantomime errors. We conducted a large-scale voxel-based lesion-symptom mapping analyses with configural/spatial (CS) and body-part-as-object (BPO) pantomime errors of 150 left and right brain-damaged patients. Our results confirm the left hemisphere dominance in pantomime. Both types of error were associated with damage to left inferior frontal regions in tumor and stroke patients. While CS pantomime errors were associated with left temporoparietal lesions in both stroke and tumor patients, these errors appeared less associated with parietal areas in stroke than in tumor patients and less associated with temporal in tumor than stroke patients. BPO errors were associated with left inferior frontal lesions in both tumor and stroke patients. Collectively, our results reveal a left intrahemispheric dissociation for various aspects of pantomime, but with an unspecific role for inferior frontal regions.
Resumo:
In this article we describe a 41-year-old man who, following an operation to repair a ruptured anterior communicating artery aneurysm, manifested the "hallmark" features of a dysexecutive memory impairment. Of particular note was the patient's apparently normal level of recognition memory but impaired recall on tasks matched for difficulty in control subjects. However, further testing revealed that the patient's recognition memory was not normal under all circumstances. Implications of these data for the interpretation and further investigation of the dysexecutive deficit are discussed.
Resumo:
Rapport de synthèse : Cette thèse a étudié en détail le cas d'un enfant souffrant d'une hémiplégie congénitale sur un infarctus prénatal étendu qui a développé une forme particulière d'épilepsie, le syndrome des pointes ondes continues du sommeil (POCS), associé à une régression mentale massive. Les caractéristiques de cette détérioration pointaient vers un dysfonctionnement de type frontal. Une chirurgie de l'épilepsie (hémisphérotomie) a, non seulement, permis la guérison de l'épilepsie mais une récupération rapide sur le plan comportemental et cognitif, suivie d'une reprise plus lente du développement, avec finalement à l'âge de 11 ans un niveau de déficience intellectuelle modérée. L'intérêt de cette étude réside dans le fait que l'enfant a pu être suivi prospectivement entre l'âge de 4.5 ans et 11 ans par des enregistrements électro-encéphalographiques (EEG) ainsi que des tests neuropsychologiques et des questionnaires de comportements sériés, permettant de comparer les périodes pré-, péri- et postopératoires, ce qui est rarement réalisable. Un enregistrement EEG de surface a même pu être effectué durant l'opération sur l'hémisphère non lésé, permettant de documenter l'arrêt des décharges épileptiformes généralisées dès la fin de l'intervention. L'hypothèse que nous avons- souhaité démontrer est que la régression comportementale et cognitive présentée par l'enfant après une période de développement précoce presque normale (retard de langage) était de nature épileptique : nous l'expliquons par la propagation de l'activité électrique anormale à partir de la lésion de l'hémisphère gauche vers les régions préservées, en particulier frontales bilatérales. L'hémisphérotomie a permis une récupération rapide en déconnectant l'hémisphère gauche lésé et épileptogène de l'hémisphère sain, qui a ainsi pu reprendre les fonctions cognitives les plus importantes. Les progrès plus lents par la suite et l'absence de rattrapage au delà d'un niveau de déficience mentale modérée sont plus difficiles à expliquer: on postule ici un effet de l'épilepsie sur le développement de réseaux neuronaux de l'hémisphère initialement non lésé, réseaux qui sont à la fois à un stade précoce de leur maturation et en cours de réorganisation suite à la lésion prénatale. La littérature sur les déficits cognitifs avant et après hemisphérotomie s'est surtout préoccupée du langage et de sa récupération possible. À notre connaissance, notre étude est la première à documenter la réversibilité d'une détérioration mentale avec les caractéristiques d'un syndrome frontal après hémisphérotomie. La chirurgie de l'épilepsie a offert ici une occasion unique de documenter le rôle de l'activité épileptique dans la régression cognitive puisqu'en interrompant brusquement la propagation de l'activité électrique anormale, on a pu comparer la dynamique du développement avant et après l'intervention. La mise en relation des multiples examens cliniques et EEG pratiqués chez un seul enfant sur plusieurs années a permis d'obtenir des informations importantes dans la compréhension des troubles cognitifs et du comportement associés aux épilepsies focales réfractaires. ABSTRACT : A boy with a right congenital hemiparesis due to a left pre-natal middle cerebral artery infarct developed focal epilepsy at 33 months and then an insidious and subsequently more rapid, massive cognitive and behavioural regression with a frontal syndrome between the ages of 4 and 5 years with continuous spike-waves during sleep (CSWS) on the EEG. Both the epilepsy and the CSWS were immediately suppressed by hemispherotomy at the age of 5 years and 4months. A behavioural-cognitive follow-up prior to hemispheratomy, an per-operative EEG and corticography and serial post-operative neuropsychological assessments were performed until the age of 11 years. The spread of the epileptic activity to the "healthy" frontal region was the cause of the reversible frontal syndrome. A later gradual long-term but incomplete cognitive recovery, with moderate mental disability was documented. T9ris outcome is probably explained by another facet of the epilepsy, namely the structural effects of prolonged epileptic dischazges in rapidly developing cerebral networks which are, at the same time undergoing the reorganization imposed by a unilateral early hemispheric lesion. Group studies on the outcome of children before and after hemispherectomy using only single IQ measures, pre- and postoperatively, may miss particular epileptic cognitive dysfunctions as they are likely to be different from case to case. Such detailed and rarely available complementary clinical and EEG data obtained in a single case at different time periods in relation to the epilepsy, including peroperative electrophysiological findings, may help to understand the different cognitive deficits and recovery profiles and the limits of full cognitive recovery.