913 resultados para Freshwater microbiology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the last of a series dealing with the survey of freshwater gastropods of the state of Rio de Janeiro, the results of collections carried out in the Noroeste Fluminense Mesoregion from 2002 to 2005 are presented and revealed the occurrence of 20 species: Antillorbis nordestensis; Biomphalaria glabrata; B. straminea; B. tenagophila; Drepanotrema anatinum; D. cimex; D. depressissimum; D. lucidum; Ferrissia sp.; Gundlachia ticaga; Gundlachia sp.; Heleobia sp.; Idiopyrgus sp.; Lymnaea columella; Melanoides tuberculatus; Physa acuta; P. marmorata; Plesiophysa guadeloupensis; Pomacea lineata; and Pomacea sp. Concerning the snail hosts of schistosomiasis the three natural vectors were identified and, although no specimens were found harbouring larval forms of Schistosoma mansoni, different kinds of cercariae had been observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-compatible hermaphroditic organisms that mix self-fertilization and outcrossing are of great interest for investigating the evolution of mating systems. We investigate the evolution of selfing in Lymnaea truncatula, a self-compatible hermaphroditic freshwater snail. We first analyze the consequences of selfing in terms of genetic variability within and among populations and then investigate how these consequences along with the species ecology (harshness of the habitat and parasitism) might govern the evolution of selfing. Snails from 13 localities (classified as temporary or permanent depending on their water availability) were sampled in western Switzerland and genotyped for seven microsatellite loci. F(IS) (estimated on adults) and progeny array analyses (on hatchlings) provided similar selfing rate estimates of 80%. Populations presented a low polymorphism and were highly differentiated (F(ST) = 0.58). Although the reproductive assurance hypothesis would predict higher selfing rate in temporary populations, no difference in selfing level was observed between temporary and permanent populations. However, allelic richness and gene diversity declined in temporary habitats, presumably reflecting drift. Infection levels varied but were not simply related to either estimated population selfing rate or to differences in heterozygosity. These findings and the similar selfing rates estimated for hatchlings and adults suggest that within-population inbreeding depression is low in L. truncatula.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Determine the presence and evolution of indicators microorganisms of water pollution in “Conde del Guadalhorce” reservoir, Málaga city, Spain. A second objective was to analyze pollution degree and evaluate the sanitary quality of bathing water and compliance with European Directive 76/160/CE. Method. A total of 120 water samples were collected in two bathing freshwater sites during May to September sampling period between 2000 to 2005, and the numbers of total coliforms (CT), faecal coliforms (CF) and faecal streptococci (EF) were enumerated using the membrane filtration method. We used the log-normal distribution method and calculate the logarithmic means, percentile points, ratios CF:EF, ANOVA and Pearson correlations. Results. Only two samples overcome CF limit values at Camping sampling station during 2000 year. Ratios CF:EF values were higher (> 4) during 2000 to 2002, and lower (< 0,7) during 2003 to 2005. Significant differences (ANOVA F = 3,41, ∝ < 0,01) was only observed with EF during evaluated period. There was no significant difference between concentration means at bathing water sites (ANOVA, F = 3,395, ∝ < 0,01). The counts of CT and CF were significantly correlated in Kiosko water samples, while in Camping water, significant correlation (t = 0,632, p < 0,05) was only observed with EF at the Camping station during 2000, 2003 and 2005 years. Conclusions. “Conde del Guadalhorce” reservoir showed hygienic conditions for safety bathing. Globally, water bathing quality is good. CT, CF y EF indicators were agreed with UE Directive during 2000- 2005, with exception CF at Camping station in 2000 year. CT y CF concentrations at Camping were frecuently higher than Kiosko, it could be caused to swimmers abundance and recreational activities. There was a trend towards rising EF, it could be caused to faecal pollution source of animal origin, needed to research it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new ceratomyxid parasite was examined for taxonomic identification, upon being found infecting the gall bladder of Hemiodus microlepis (Teleostei: Hemiodontidae), a freshwater teleost collected from the Amazon River, Brazil. Light and transmission electron microscopy revealed elongated crescent-shaped spores constituted by two asymmetrical shell valves united along a straight sutural line, each possessing a lateral projection. The spores body measured 5.2 ± 0.4 µm (n = 25) in length and 35.5 ± 0.9 µm (n = 25) in total thickness. The lateral projections were asymmetric, one measuring 18.1 ± 0.5 µm (n = 25) in thickness and the other measuring 17.5 ± 0.5 µm (n = 25) in thickness. Two equal-sized subspherical polar capsules measuring 2.2 ± 0.3 µm in diameter were located at the same level, each possessing a polar filament with 5-6 coils. The sporoplasm was binucleate. Considering the morphometric data analyzed from the microscopic observations, as well as the host species and its geographical location, this paper describes a new myxosporean species, herein named Ceratomyxa microlepis sp. nov.; therefore representing the first description of a freshwater ceratomyxid from the South American region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates faecal indicator bacteria (FIB), multiple antibiotic resistant (MAR), and antibiotic resistance genes (ARGs), of sediment profiles from different parts of Lake Geneva (Switzerland) over the last decades. MARs consist to expose culturable Escherichia coli (EC) and Enterococcus (ENT) to mixed five antibiotics including Ampicillin, Tetracycline, Amoxicillin, Chloramphenicol and Erythromycin. Culture-independent is performed to assess the distribution of ARGs responsible for, β-lactams (blaTEM; Amoxicillin/Ampicillin), Streptomycin/Spectinomycin (aadA), Tetracycline (tet) Chloramphenicol (cmlA) and Vancomycin (van). Bacterial cultures reveal that in the sediments deposited following eutrophication of Lake Geneva in the 1970s, the percentage of MARs to five antibiotics varied from 0.12% to 4.6% and 0.016% to 11.6% of total culturable EC and ENT, respectively. In these organic-rich bacteria-contaminated sediments, the blaTEM resistant of FIB varied from 22% to 48% and 16% to 37% for EC and ENT respectively, whereas the positive PCR assays responsible for tested ARGs were observed for EC, ENT, and total DNA from all samples. The aadA resistance gene was amplified for all the sediment samples, including those not influenced by WWTP effluent water. Our results demonstrate that bacteria MARs and ARGs highly increased in the sediments contaminated with WWTP effluent following the cultural eutrophication of Lake Geneva. Hence, the human-induced changing limnological conditions highly enhanced the sediment microbial activity, and therein the spreading of antibiotic resistant bacteria and genes in this aquatic environment used to supply drinking water in a highly populated area. Furthermore, the presence of the antibiotic resistance gene aadA in all the studied samples points out a regional dissemination of this emerging contaminant in freshwater sediments since at least the late nineteenth century.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteria have long been the targets for genetic manipulation, but more recently they have been synthetically designed to carry out specific tasks. Among the simplest of these tasks is chemical compound and toxicity detection coupled to the production of a quantifiable reporter signal. In this Review, we describe the current design of bacterial bioreporters and their use in a range of assays to measure the presence of harmful chemicals in water, air, soil, food or biological specimens. New trends for integrating synthetic biology and microengineering into the design of bacterial bioreporter platforms are also highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study characterized the fecal indicator bacteria (FIB), including Escherichia coli (E. coli) and Enteroccocus (ENT), disseminated over time in the Bay of Vidy, which is the most contaminated area of Lake Geneva. Sediments were collected from a site located at similar to 500 m from the present waste water treatment plant (WWTP) outlet pipe, in front of the former WWTP outlet pipe, which was located at only 300 m from the coastal recreational area (before 2001). E. coil and ENT were enumerated in sediment suspension using the membrane filter method. The FIB characterization was performed for human Enterococcus faecalis (E. faecalis) and Enterococcus faecium (E. faecium) and human specific bacteroides by PCR using specific primers and a matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Bacterial cultures revealed that maximum values of 35.2 x 10(8) and 6.6 x 10(6) CFU g(-1) dry sediment for E. coil and ENT, respectively, were found in the sediments deposited following eutrophication of Lake Geneva in the 1970s. whereas the WWTP started operating in 1964. The same tendency was observed for the presence of human fecal pollution: the percentage of PCR amplification with primers ESP-1/ESP-2 for E. faecalis and E. faecium indicated that more than 90% of these bacteria were from human origin. Interestingly, the PCR assays for specific-human bacteroides HF183/HF134 were positive for DNA extracted from all isolated strains of sediment surrounding WWPT outlet pipe discharge. The MALDI-TOF MS confirmed the presence of general E. coli and predominance E. faecium in isolated strains. Our results demonstrated that human fecal bacteria highly increased in the sediments contaminated with WWTP effluent following the eutrophication of Lake Geneva. Additionally, other FIB cultivable strains from animals or adapted environmental strains were detected in the sediment of the bay. The approaches used in this research are valuable to assess the temporal distribution and the source of the human fecal pollution in aquatic environments. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flow cytometry (FCM) is emerging as an important tool in environmental microbiology. Although flow cytometry applications have to date largely been restricted to certain specialized fields of microbiology, such as the bacterial cell cycle and marine phytoplankton communities, technical advances in instrumentation and methodology are leading to its increased popularity and extending its range of applications. Here we will focus on a number of recent flow cytometry developments important for addressing questions in environmental microbiology. These include (i) the study of microbial physiology under environmentally relevant conditions, (ii) new methods to identify active microbial populations and to isolate previously uncultured microorganisms, and (iii) the development of high-throughput autofluorescence bioreporter assays

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Larvae of Oukuriella Epler, 1986 (Diptera, Chironomidae) inside freshwater sponges are reported for the first time in Brazil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Microbial mats very efficiently cycle elements, such as C, 0, N, S and H, which makes them key players of redox processes at the biosphere-lithosphere interface. They are characterized by high metabolic activities and high turnover rates (production and consumption) of biomass, which mainly consists of cell material and of extracellular organic matter (EOM). The EOM forms a matrix, embedding the microbial cells and fulfilling various functions within the microbial mat, including: mat attachment to surfaces; creation of micro-domains within the mat; physical stabilization under hy- drodynamic stress and the protection of the cells in multiple other stress conditions. EOM mainly consists of polysaccharides, amino acids, and a variety of chemical func-tional groups {e.g., -C00H, - SH -OH). These groups strongly bind cations such as Ca2+ and Mg2+ and thus exert a strong control on carbonate mineral formation within the microbial mat. A feedback mechanism between community metabolisms, their prod¬ucts, and the surrounding physicochemical microenvironment thus influences the de¬gree of carbonate saturation favoring either carbonate precipitation or dissolution. We investigated the driving forces and mechanisms of microbialite formation in the Sari ne River, FR, Switzerland, the hypersaline lake, Big Pond, Bahamas and in labo¬ratory experiments. The two fundamentally different natural systems allowed us to compare the geochemical conditions and microbial metabolisms, necessary for car¬bonate formation in microbial mats. Although carbonates are oversaturated in both environments, precipitation does not occur on physicochemical substrates (i.e. out¬side the microbial mats). In the Sarine a high crystal nucleation threshold exceeds the carbonate saturation, despite the high carbonate alkalinity in the water column. Cyanobacterial photosynthesis strongly locally enhances the carbonate alkalinity, whereas the EOM attract and immobilize calcium, which increases the saturation state and finally leads to carbonate precipitation within the EOM (in this case the cyanobacterial sheath) as nucleation template. In Big Pond, the presence of calcium- chelating anions (i.e. sulfate) and EOM, as well as the presence of magnesium, lowers the calcium activity in the water column and mat, and thus inhibits carbonate pre¬cipitation. Coupled with other heterotrophic metabolisms, sulfate reduction uses the EOM as carbon source, degrading it. The resulting EOM consumption creates alkalin¬ity, releases calcium and consumes sulfate in mat-micro domains, which leads to the formation of carbonate layers at the top of the microbial mat. Résumé: Interface biosphère/lithosphère: médiation microbienne de la précipitation de CaC03 dans des environnements en eaux douces et hypersalines Les tapis microbiens engendrent une circulation très efficace des éléments, tels que C, 0, N, S et H, ce qui en fait des acteurs clé pour les processus d'oxydoréduction à l'inter¬face biosphère-lithosphère. Ils sont caractérisés par des taux élevés d'activité méta¬bolique, ainsi que par la production et la consommation de biomasse, principalement constituée de cellules microbiennes et de matière organique extracellulaire (MOE). Dans un tapis microbien, les cellules microbiennes sont enveloppées par une matrice de MOE qui a différentes fonctions dont l'attachement du tapis aux surfaces, la créa¬tion de micro-domaines dans le tapis, la stabilisation physique en situation de stress hydrodynamique, et la protection des cellules dans de multiples autres conditions de stress. La MOE se compose principalement de polysaccharides, d'acides aminés, et d'une variété de groupes fonctionnels chimiques (par exemple, COOH, -SH et -OH). Ces groupes se lient fortement aux cations, tels que Ca2+ et Mg2+, et exercent ainsi un contrôle fort sur la formation de CaC03 dans le tapis microbien. Un mécanisme de rétroaction, entre les métabolismes de la communauté microbienne, leurs produits, et le microenvironnement physico-chimique, influence le degré de saturation de car¬bonate, favorisant soit leur précipitation, soit leur dissolution. Nous avons étudié le moteur et les mécanismes de minéralisation dans des tapis de la Sarine, FR, Suisse et du lac hypersalin, Big Pond, aux Bahamas, ainsi que durant des expériences en laboratoire. Les deux systèmes naturels, fondamentalement dif¬férents, nous ont permis de comparer les conditions géochimiques et les métabolis¬mes nécessaires à la formation des carbonates dans des tapis microbiens. Bien que les carbonates soient sursaturés dans les deux environnements, la précipitation ne se produit pas sur des substrats physico-chimiques (en dehors du tapis microbien). Dans la Sarine, malgré un taux d'alcalinité élevé, les valeurs de seuil pour la nucléa- tion de carbonates sont plus hautes que la saturation du carbonate. La photosynthèse cyanobactérienne augmente localement l'alcalinité, alors que la MOE attire et immo¬bilise le calcium, ce qui augmente l'état de saturation et conduit finalement à la pré¬cipitation des carbonates, en utilisant la MOE comme substrat de nucléation. À Big Pond, la présence de chélateurs de calcium, notamment les anions (p.ex. le sulfate) et la MOE, ainsi que la présence de magnésium, réduit l'activité du calcium et inhibe en conséquence la précipitation des carbonates. Couplée avec d'autres métabolismes hétérotrophes, la réduction des sulfates utilise la MOE comme source de carbone, en la dégradant. Cette consommation de MOE crée l'alcalinité, consomme des sulfates et libère du calcium dans des micro-domaines, conduisant à la formation de couches de carbonates dans le haut du tapis microbien.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microorganisms interact with plants because plants offer a wide diversity of habitats including the phyllosphere (aerial plant part), the rhizosphere (zone of influence of the root system), and the endosphere (internal transport system). Interactions of epiphytes, rhizophytes or endophytes may be detrimental or beneficial for either the microorganism or the plant and may be classified as neutralism, commensalism, synergism, mutualism, amensalism, competition or parasitism

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Palaeobotany applied to freshwater plants is an emerging field of palaeontology. Hydrophytic plants reveal evolutionary trends of their own, clearly distinct from those of the terrestrial and marine flora. During the Precambrian, two groups stand out in the fossil record of freshwater plants: the Cyanobacteria (stromatolites) in benthic environments and the prasinophytes (leiosphaeridian acritarchs) in transitional planktonic environments. During the Palaeozoic, green algae (Chlorococcales, Zygnematales, charophytes and some extinct groups) radiated and developed the widest range of morphostructural patterns known for these groups. Between the Permian and Early Cretaceous, charophytes dominated macrophytic associations, with the consequence that over tens of millions of years, freshwater flora bypassed the dominance of vascular plants on land. During the Early Cretaceous, global extension of the freshwater environments is associated with diversification of the flora, including new charophyte families and the appearance of aquatic angiosperms and ferns for the first time. Mesozoic planktonic assemblages retained their ancestral composition that was dominated by coenobial Chlorococcales, until the appearance of freshwater dinoflagellates in the Early Cretaceous. In the Late Cretaceous, freshwater angiosperms dominated almost all macrophytic communities worldwide. The Tertiary was characterised by the diversification of additional angiosperm and aquatic fern lineages, which resulted in the first differentiation of aquatic plant biogeoprovinces. Phytoplankton also diversified during the Eocene with the development of freshwater diatoms and chrysophytes. Diatoms, which were exclusively marine during tens of millions of years, were dominant over the Chlorococcales during Neogene and in later assemblages. During the Quaternary, aquatic plant communities suffered from the effects of eutrophication, paludification and acidification, which were the result of the combined impact of glaciation and anthropogenic disturbance.