899 resultados para Fractional Calculus Operators


Relevância:

90.00% 90.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 41A25, 41A36, 40G15.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 41A25, 41A36.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a new discretization for the Hadamard fractional derivative, that simplifies the computations. We then apply the method to solve a fractional differential equation and a fractional variational problem with dependence on the Hadamard fractional derivative.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we present a new numerical method to solve fractional differential equations. Given a fractional derivative of arbitrary real order, we present an approximation formula for the fractional operator that involves integer-order derivatives only. With this, we can rewrite FDEs in terms of a classical one and then apply any known technique. With some examples, we show the accuracy of the method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we generalize radial and standard Clifford-Hermite polynomials to the new framework of fractional Clifford analysis with respect to the Riemann-Liouville derivative in a symbolic way. As main consequence of this approach, one does not require an a priori integration theory. Basic properties such as orthogonality relations, differential equations, and recursion formulas, are proven.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this paper is to exhibit a necessary and sufficient condition of optimality for functionals depending on fractional integrals and derivatives, on indefinite integrals and on presence of time delay. We exemplify with one example, where we nd analytically the minimizer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we present a new type of fractional operator, the Caputo–Katugampola derivative. The Caputo and the Caputo–Hadamard fractional derivatives are special cases of this new operator. An existence and uniqueness theorem for a fractional Cauchy type problem, with dependence on the Caputo–Katugampola derivative, is proven. A decomposition formula for the Caputo–Katugampola derivative is obtained. This formula allows us to provide a simple numerical procedure to solve the fractional differential equation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper deals with fractional differential equations, with dependence on a Caputo fractional derivative of real order. The goal is to show, based on concrete examples and experimental data from several experiments, that fractional differential equations may model more efficiently certain problems than ordinary differential equations. A numerical optimization approach based on least squares approximation is used to determine the order of the fractional operator that better describes real data, as well as other related parameters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The first objective of this project is to develop new efficient numerical methods and supporting error and convergence analysis for solving fractional partial differential equations to study anomalous diffusion in biological tissue such as the human brain. The second objective is to develop a new efficient fractional differential-based approach for texture enhancement in image processing. The results of the thesis highlight that the fractional order analysis captured important features of nuclear magnetic resonance (NMR) relaxation and can be used to improve the quality of medical imaging.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the distribution of first passage time for Levy type anomalous diffusion. A fractional Fokker-Planck equation framework is introduced.For the zero drift case, using fractional calculus an explicit analytic solution for the first passage time density function in terms of Fox or H-functions is given. The asymptotic behaviour of the density function is discussed. For the nonzero drift case, we obtain an expression for the Laplace transform of the first passage time density function, from which the mean first passage time and variance are derived.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A digital differentiator simply involves the derivation of an input signal. This work includes the presentation of first-degree and second-degree differentiators, which are designed as both infinite-impulse-response (IIR) filters and finite-impulse-response (FIR) filters. The proposed differentiators have low-pass magnitude response characteristics, thereby rejecting noise frequencies higher than the cut-off frequency. Both steady-state frequency-domain characteristics and Time-domain analyses are given for the proposed differentiators. It is shown that the proposed differentiators perform well when compared to previously proposed filters. When considering the time-domain characteristics of the differentiators, the processing of quantized signals proved especially enlightening, in terms of the filtering effects of the proposed differentiators. The coefficients of the proposed differentiators are obtained using an optimization algorithm, while the optimization objectives include magnitude and phase response. The low-pass characteristic of the proposed differentiators is achieved by minimizing the filter variance. The low-pass differentiators designed show the steep roll-off, as well as having highly accurate magnitude response in the pass-band. While having a history of over three hundred years, the design of fractional differentiator has become a ‘hot topic’ in recent decades. One challenging problem in this area is that there are many different definitions to describe the fractional model, such as the Riemann-Liouville and Caputo definitions. Through use of a feedback structure, based on the Riemann-Liouville definition. It is shown that the performance of the fractional differentiator can be improved in both the frequency-domain and time-domain. Two applications based on the proposed differentiators are described in the thesis. Specifically, the first of these involves the application of second degree differentiators in the estimation of the frequency components of a power system. The second example concerns for an image processing, edge detection application.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nesta tese de doutoramento apresentamos um cálculo das variações fraccional generalizado. Consideramos problemas variacionais com derivadas e integrais fraccionais generalizados e estudamo-los usando métodos directos e indirectos. Em particular, obtemos condições necessárias de optimalidade de Euler-Lagrange para o problema fundamental e isoperimétrico, condições de transversalidade e teoremas de Noether. Demonstramos a existência de soluções, num espaço de funções apropriado, sob condições do tipo de Tonelli. Terminamos mostrando a existência de valores próprios, e correspondentes funções próprias ortogonais, para problemas de Sturm- Liouville.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper studies the DNA code of eleven mammals from the perspective of fractional dynamics. The application of Fourier transform and power law trendlines leads to a categorical representation of species and chromosomes. The DNA information reveals long range memory characteristics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper studies the optimization of complex-order algorithms for the discrete-time control of linear and nonlinear systems. The fundamentals of fractional systems and genetic algorithms are introduced. Based on these concepts, complexorder control schemes and their implementation are evaluated in the perspective of evolutionary optimization. The results demonstrate not only that complex-order derivatives constitute a valuable alternative for deriving control algorithms, but also the feasibility of the adopted optimization strategy.