978 resultados para Forest Structure
Resumo:
The Brazilian Atlantic Forest is one of the richest biodiversity hotspots of the world. Paleoclimatic models have predicted two large stability regions in its northern and central parts, whereas southern regions might have suffered strong instability during Pleistocene glaciations. Molecular phylogeographic and endemism studies show, nevertheless, contradictory results: although some results validate these predictions, other data suggest that paleoclimatic models fail to predict stable rainforest areas in the south. Most studies, however, have surveyed species with relatively high dispersal rates whereas taxa with lower dispersion capabilities should be better predictors of habitat stability. Here, we have used two land planarian species as model organisms to analyse the patterns and levels of nucleotide diversity on a locality within the Southern Atlantic Forest. We find that both species harbour high levels of genetic variability without exhibiting the molecular footprint of recent colonization or population expansions, suggesting a long-term stability scenario. The results reflect, therefore, that paleoclimatic models may fail to detect refugia in the Southern Atlantic Forest, and that model organisms with low dispersal capability can improve the resolution of these models.
Resumo:
We studied the structure of a population of Hydromedusa maximiliani associated with a stream in Parque Estadual da Serra do Mar, Nucleo Itutinga-Piloes, southeastern Brazil, between October 2004 and October 2005. Twenty-five individuals were captured, and a population size of 43.72 +/- 23.7 individuals was estimated. This value is similar to that of the population of Parque Estadual Carlos Botelho, another Atlantic forest reserve of southeastern Brazil. Males were recaptured more frequently than females, suggesting higher activity and/or greater movement of males.
Resumo:
The use of chloroplast DNA markers (cpDNA) helps to elucidate questions related to ecology, evolution and genetic structure. The knowledge of inter-and intra-population genetic structure allows to design effective conservation and management strategies for tropical tree species. With the aim to help the conservation of Hymenaea stigonocarpa of the Cerrado (Brazilian savanna) in Sao Paulo State, an analysis of the spatial genetic structure (SGS) was conducted in two populations using five universal chloroplast microsatellite loci (cpSSR). The population of 68 trees of H. stigonocarpa in the Ecological Station of Itirapina (ESI) had a single haplotype, indicating a strong founder effect. In turn, the population of 47 trees of H. stigonocarpa in a contiguous area that includes the Ecological Station of Assis and the Assis State Forest (ESA), showed six haplotypes ((n) over cap (h) = 6) with a moderate haplotype diversity ((h) over cap = 0667 + 0094), revealing that it was founded by a small number of maternal lineages. The SGS analysis for the population ESA/ASF, using Moran`s I index, indicated limited seed dispersal. Considering SGS, for ex situ conservation strategies in the population ESA/ASF, seed harvesting should require a minimum distance of 750 m among seed-trees.
Resumo:
Riparian forests are important for the structure and functioning of stream ecosystems, providing structural components such as large woody debris (LWD). Changes in these forests will cause modifications in the LWD input to streams, affecting their structure. In order to assess the influence of riparian forests changes in LWD supply, 15 catchments (third and fourth order) with riparian forests at different conservation levels were selected for sampling. In each catchment we quantified the abundance, volume and diameter of LWD in stream channels; the number, area and volume of pools formed by LWD and basal area and tree diameter of riparian forest. We found that riparian forests were at a secondary successional stage with predominantly young trees (diameter at breast height < 10 cm) in all studied streams. Results showed that basal area and diameter of riparian forest differed between the stream groups (forested and non-forested), but tree density did not differ between groups. Differences were also observed in LWD abundance, volume, frequency of LWD pools with subunits and area and volume of LWD pools. LWD diameter, LWD that form pools diameter and frequency of LWD pools without subunits did not differ between stream groups. Regression analyses showed that LWD abundance and volume, and frequency of LWD pools (with and without subunits) were positively related with the proportion of riparian forest. LWD diameter was not correlated to riparian tree diameter. The frequency of LWD pools was correlated to the abundance and volume of LWD, but characteristics of these pools (area and volume) were not correlated to the diameter of LWD that formed the pools. These results show that alterations in riparian forest cause modifications in the LWD abundance and volume in the stream channel, affecting mainly the structural complexity of these ecosystems (reduction in the number and structural characteristics of LWD pools). Our results also demonstrate that riparian forest conservation actions must consider not only its extension, but also successional stage to guarantee the quantity and quality of LWD necessary to enable the structuring of stream channels.
Resumo:
The evaluations of the effect of the climatic conditions and of the intensity of forest management in the trunk of the Gmelina arborea Linn. Roxb. trees are restricted to its physical-mechanical properties and use. The present work has as objective to study the radial variations of the wood anatomy of the gmelina trees sampled in plantations of 30 sites in Costa Rica, characterized by two climatic conditions (tropical dry and humid) and three intensities of forest management (intensive, moderate and without management). The results of the analyses demonstrated the existence of radial variation of the different anatomical parameters, except for the fiber lumen diameter and multiple vessels in the wood of the gmelina trees. For the wood anatomical elements, fibers (width, lumen diameter, and length), vessels (multiple vessels, diameter and frequency) and radial parenchyma (height) relationships were observed with the climate (tropical humid and dry). The radial variations of the wood anatomical elements were, also, influenced by the management regimes of the gmelina trees.
Resumo:
Mahogany trees, Swietenia macrophylla, occur in open rainforest, semi deciduous and deciduous and dense rainforest of Peruvian Amazonian tropical forest. They occur, preferentially, in areas with a defined dry season, with typical phenology and seasonal variation activity, forming distinct tree-rings. The present work had as aim to determine the wood density radial variation of 14 mahogany trees, of two populations of the Peruvian Amazonian tropical forest, through the X-ray densitometry and to evaluate their application as methodology, compared to the classic method of measurement table, for the determination of the treering width. The radial wood apparent density of the trees profiles rendered it possible to delimit the areas of juvenile-adult wood and of the heartwood-sapwood, relative to the anatomical structure and chemical composition differences, due to the extractives and the vessels obstruction by tyloses. The mean, minimum and maximum wood apparent density of the mahogany trees for the Populations A and B were of 0.70; 0.29; 1.01 g.cm(-3) and 0.81; 0.29; 1.19 g.cm(-3), respectively. The analysis of the variance and mean test indicate differences of mean wood density among the mahogany trees of each population, probably due to the age of the trees. There was no correlation between mean wood density of mahogany trees among the two populations, as well as, between the tree-ring width and the respective mean density. The X-ray densitometry technique is an important tool in the evaluation of the radial variation of wood apparent density and the delimitation of tree-ring boundaries, with correlations of 0.94 and 0.93 in relation to measurement table, for each sampled population.
Resumo:
The general objective of this study was to evaluate the ordered weighted averaging (OWA) method, integrated to a geographic information systems (GIS), in the definition of priority areas for forest conservation in a Brazilian river basin, aiming at to increase the regional biodiversity. We demonstrated how one could obtain a range of alternatives by applying OWA, including the one obtained by the weighted linear combination method and, also the use of the analytic hierarchy process (AHP) to structure the decision problem and to assign the importance to each criterion. The criteria considered important to this study were: proximity to forest patches; proximity among forest patches with larger core area; proximity to surface water; distance from roads: distance from urban areas; and vulnerability to erosion. OWA requires two sets of criteria weights: the weights of relative criterion importance and the order weights. Thus, Participatory Technique was used to define the criteria set and the criterion importance (based in AHP). In order to obtain the second set of weights we considered the influence of each criterion, as well as the importance of each one, on this decision-making process. The sensitivity analysis indicated coherence among the criterion importance weights, the order weights, and the solution. According to this analysis, only the proximity to surface water criterion is not important to identify priority areas for forest conservation. Finally, we can highlight that the OWA method is flexible, easy to be implemented and, mainly, it facilitates a better understanding of the alternative land-use suitability patterns. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A comparative study between microsatellite and allozyme markers was conducted on the genetic structure and mating system in natural populations of Euterpe edulis Mart. Three cohorts, including seedlings, saplings, and adults, were examined in 4 populations using 10 allozyme loci and 10 microsatellite loci. As expected, microsatellite markers had a much higher degree of polymorphism than allozymes, but estimates of multilocus outcrossing rate ((t) over cap (m) = 1.00), as well as estimates of genetic structure (F(IS), G(ST)), were similar for the 2 sets of markers. Estimates of R(ST), for microsatellites, were higher than those of GST, but results of both statistics revealed a close agreement for the genetic structure of the species. This study provides support for the important conclusion that allozymes are still useful and reliable markers to estimate population genetic parameters. Effects of sample size on estimates from hypervariable loci are also discussed in this paper.
Resumo:
By allowing the estimation of forest structural and biophysical characteristics at different temporal and spatial scales, remote sensing may contribute to our understanding and monitoring of planted forests. Here, we studied 9-year time-series of the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) on a network of 16 stands in fast-growing Eucalyptus plantations in Sao Paulo State, Brazil. We aimed to examine the relationships between NDVI time-series spanning entire rotations and stand structural characteristics (volume, dominant height, mean annual increment) in these simple forest ecosystems. Our second objective was to examine spatial and temporal variations of light use efficiency for wood production, by comparing time-series of Absorbed Photosynthetically Active Radiation (APAR) with inventory data. Relationships were calibrated between the NDVI and the fractions of intercepted diffuse and direct radiation, using hemispherical photographs taken on the studied stands at two seasons. APAR was calculated from the NDVI time-series using these relationships. Stem volume and dominant height were strongly correlated with summed NDVI values between planting date and inventory date. Stand productivity was correlated with mean NDVI values. APAR during the first 2 years of growth was variable between stands and was well correlated with stem wood production (r(2) = 0.78). In contrast, APAR during the following years was less variable and not significantly correlated with stem biomass increments. Production of wood per unit of absorbed light varied with stand age and with site index. In our study, a better site index was accompanied both by increased APAR during the first 2 years of growth and by higher light use efficiency for stem wood production during the whole rotation. Implications for simple process-based modelling are discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The tree species Guarea guidonea (Meliaceae) belongs to a predominantly tropical family, being largely found in natural or anthropic forest fragments within the Brazilian Atlantic Forest. Aiming to develop future studies on the genetic structure of plant species from forests fragments, eleven microsatellite markers were developed for Guarea guidonia, based on the analysis of 45 individuals from natural populations of three different fragments within the forest-anthropic edge, interior fragment and natural edge. Only eight loci showed to be polymorphic and the number of alleles ranged from two to four (mean of 2.50). All populations showed almost the same level of genetic diversity (mean H(e) = 0.3775). These loci will be useful for population genetics studies on Guarea guidonea, providing information for the conservation and management of this species.
Resumo:
The shrub species Psychotria tenuinervis (Rubiaceae) is native to the Brazilian Atlantic forest and is largely found within natural and disturbed forest fragments. Aiming to develop studies on population genetic structure of forest fragment species, eigth microsatellite markers were developed for P. tenuinervis. Also, 15 loci already developed for Coffea (Rubiaceae) were tested for transferability to this species. We utilized 45 individuals from natural populations of three different fragments-anthropic edge, interior fragment and natural edge, within the Brazilian Atlantic forest. The average number of alleles per locus was 2.5 (two-four alleles/locus). These loci will be useful for future population genetic studies aiming to the conservation and management of this species.
Resumo:
The abundance and species richness of mollusc and crab assemblages were examined in a subtropical mangrove forest in Moreton Bay, Queensland, Australia, which has been disturbed and damaged by the construction of a wooden boardwalk and a path. Sections of the forest immediately adjacent to the boardwalk and path were compared with reference areas to determine whether changes to the small-scale structural complexity within the forest affected the benthic fauna. The disturbed area was characterised by having 65-80% fewer pneumatophores, significantly fewer species and individuals of molluscs, but significantly more species and individuals of crabs than the reference areas. The abundance of mangrove pneumatophores and the attached epiphytic algae were manipulated at two sites to determine whether observed differences in these features could account for the differences in the assemblage of molluscs in the disturbed area of the forest compared with reference areas. Five experimental treatments were used: undisturbed controls, pneumatophore removals (abundance reduced by ca. 65%), epiphytic algal removals (algae removed from ca. 65% of pneumatophores), pneumatophore disturbance controls and algal disturbance controls. The experimental reduction of the abundance of mangrove pneumatophores and the associated epiphytic algae led to significant declines (by as much as 83%) in the number of molluscs utilising the substratum in the modified plots. There was no significant difference in the abundance of molluscs in the pneumatophore and algal removal plots suggesting any effect was primarily related to removal of the epiphytic algae from the surface of the pneumatophores. The responses by the biota to the changes in the physical environment demonstrate that even relatively small-scale modifications to the physical structure of subtropical mangrove forests can lead to significant effects on the diversity and abundance of macrobenthic organisms in these habitats. Such modifications have the potential to cause cascading effects at higher trophic levels with a deterioration in the value of these habitats as nursery and feeding grounds. Future efforts at conservation of these estuarine environments must focus on the prevention or reduction of modifications to the physical structure and integrity of the system, rather than just on the prevention of loss of entire patches of habitat. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
1. The spatial and temporal distribution of eggs laid by herbivorous insects is a crucial component of herbivore population stability, as it influences overall mortality within the population. Thus an ecologist studying populations of an endangered butterfly can do little to increase its numbers through habitat management without knowledge of its egg-laying patterns across individual host-plants under different habitat management regimes. At the other end of the spectrum, a knowledge of egg-laying behaviour can do much to control pest outbreaks by disrupting egg distributions that lead to rapid population growth. 2. The distribution of egg batches of the processionary caterpillar Ochrogaster lunifer on acacia trees was monitored in 21 habitats during 2 years in coastal Australia. The presence of egg batches on acacias was affected by host-tree 'quality' (tree size and foliar chemistry that led to increased caterpillar survival) and host-tree 'apparency' (the amount of vegetation surrounding host-trees). 3. In open homogeneous habitats, more egg batches were laid on high-quality trees, increasing potential population growth. In diverse mixed-species habitats, more egg batches were laid on low-quality highly apparent trees, reducing population growth and so reducing the potential for unstable population dynamics. The aggregation of batches on small apparent trees in diverse habitats led to outbreaks on these trees year after year, even when population levels were low, while site-wide outbreaks were rare. 4. These results predict that diverse habitats with mixed plant species should increase insect aggregation and increase population stability. In contrast, in open disturbed habitats or in regular plantations, where egg batches are more evenly distributed across high-quality hosts, populations should be more unstable, with site-wide outbreaks and extinctions being more common. 5. Mixed planting should be used on habitat regeneration sites to increase the population stability of immigrating or reintroduced insect species. Mixed planting also increases the diversity of resources, leading to higher herbivore species richness. With regard to the conservation of single species, different practices of habitat management will need to be employed depending on whether a project is concerned with methods of rapidly increasing the abundance of an endangered insect or concerned with the maintenance of a stable, established insect population that is perhaps endemic to an area. Suggestions for habitat management in these different cases are discussed. 6. Finally, intercropping can be highly effective in reducing pest outbreaks, although the economic gains of reduced pest attack may be outweighed by reduced crop yields in mixed-crop systems.
Resumo:
The majority of past and current individual-tree growth modelling methodologies have failed to characterise and incorporate structured stochastic components. Rather, they have relied on deterministic predictions or have added an unstructured random component to predictions. In particular, spatial stochastic structure has been neglected, despite being present in most applications of individual-tree growth models. Spatial stochastic structure (also called spatial dependence or spatial autocorrelation) eventuates when spatial influences such as competition and micro-site effects are not fully captured in models. Temporal stochastic structure (also called temporal dependence or temporal autocorrelation) eventuates when a sequence of measurements is taken on an individual-tree over time, and variables explaining temporal variation in these measurements are not included in the model. Nested stochastic structure eventuates when measurements are combined across sampling units and differences among the sampling units are not fully captured in the model. This review examines spatial, temporal, and nested stochastic structure and instances where each has been characterised in the forest biometry and statistical literature. Methodologies for incorporating stochastic structure in growth model estimation and prediction are described. Benefits from incorporation of stochastic structure include valid statistical inference, improved estimation efficiency, and more realistic and theoretically sound predictions. It is proposed in this review that individual-tree modelling methodologies need to characterise and include structured stochasticity. Possibilities for future research are discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Understanding the mating patterns of populations of tree species is a key component of ex situ genetic conservation. In this study, we analysed the genetic diversity, spatial genetic structure (SGS) and mating system at the hierarchical levels of fruits and individuals as well as pollen dispersal patterns in a continuous population of Theobroma cacao in Para State, Brazil. A total of 156 individuals in a 0.56 ha plot were mapped and genotyped for nine microsatellite loci. For the mating system analyses, 50 seeds were collected from nine seed trees by sampling five fruits per tree (10 seeds per fruit). Among the 156 individuals, 127 had unique multilocus genotypes, and the remaining were clones. The population was spatially aggregated; it demonstrated a significant SGS up to 15m that could be attributed primarily to the presence of clones. However, the short seed dispersal distance also contributed to this pattern. Population matings occurred mainly via outcrossing, but selfing was observed in some seed trees, which indicated the presence of individual variation for self-incompatibility. The matings were also correlated, especially within ((r) over cap (p(m)) = 0.607) rather than among the fruits ((r) over cap (p(m)) = 0.099), which suggested that a small number of pollen donors fertilised each fruit. The paternity analysis suggested a high proportion of pollen migration (61.3%), although within the plot, most of the pollen dispersal encompassed short distances (28m). The determination of these novel parameters provides the fundamental information required to establish long-term ex situ conservation strategies for this important tropical species. Heredity (2011) 106, 973-985; doi:10.1038/hdy.2010.145; published online 8 December 2010