880 resultados para Forecasting and replenishment (CPFR)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper highlights some communicative and institutional challenges to using ensemble prediction systems (EPS) in operational flood forecasting, warning, and civil protection. Focusing in particular on the Swedish experience, as part of the PREVIEW FP6 project, of applying EPS to operational flood forecasting, the paper draws on a wider set of site visits, interviews, and participant observation with flood forecasting centres and civil protection authorities (CPAs) in Sweden and 15 other European states to reflect on the comparative success of Sweden in enabling CPAs to make operational use of EPS for flood risk management. From that experience, the paper identifies four broader lessons for other countries interested in developing the operational capacity to make, communicate, and use EPS for flood forecasting and civil protection. We conclude that effective training and clear communication of EPS, while clearly necessary, are by no means sufficient to ensure effective use of EPS. Attention must also be given to overcoming the institutional obstacles to their use and to identifying operational choices for which EPS is seen to add value rather than uncertainty to operational decision making by CPAs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho visa sistematizar um modelo para previsão e explicação dos movimentos de curto prazo da estrutura a termo de taxas de juros pré-fixada em reais do Brasil, baseado na relação dos movimentos em questão com os níveis e alterações que se processam nas variáveis macroeconômicas relevantes. A metodologia usada foi dividir o procedimento em duas etapas: Na primeira etapa, o modelo de Svensson (1994) é usado para ajustar a Estrutura a Termo de Taxas de Juros de cada data específica para obter os parâmetros daquela data. Isso é conseguido através da maximização da estatística R2 na regressão de mínimos quadrados, como sugerido no artigo original de Nelson e Siegel (1987). Então, as medianas dos dois parâmetros de decaimento utilizados são calculadas e mantidas arbitrariamente constantes para facilitar os cálculos da segunda etapa. Na segunda etapa, uma vez que os estimadores que melhor se ajustam às curvas de juros foram obtidos, outra regressão de MQO é realizada considerando os betas de Svensson dependentes de variáveis macroeconômicas de estado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inventory management in hospitals is of paramount importance, since the supply materials and drugs interruption can cause irreparable damage to human lives while excess inventories involves immobilization of capital. Hospitals should use techniques of inventory management to perform replenishment in shorter and shorter intervals, in order to reduce inventories and fixed assets and meet citizens requirements properly. The inventory management can be an even bigger problem for public hospitals, which have restrictions on the use of resources and decisionmaking structure more bureaucratized. Currently the University Hospital Onofre Lopes (HUOL) uses a periodic replacement policy for hospital medical supplies and medicines, which involves one moment surplus stock replenishment, the next out of stock items. This study aims to propose a system for continuous replenishment through order point for inventory of medical supplies and medicines to the hospital HUOL. Therefore, a literature review of Federal University Hospitals Management, Logistics, Inventory Management and Replenishment System in Hospitals was performed, emphasizing the demand forecast, classification or ABC curve and order point system. And also, policies of inventory management and the current proposal were described, dealing with profile of the mentioned institution, the current policy of inventory management and simulation for continuous replenishment order point. For the simulation, the sample consisted of 102 and 44 items of medical and hospital drugs, respectively, selected using the ABC classification of inventory, prioritizing items of Class A, which contains the most relevant items in added value, representing 80 % of the financial value in 2012 fiscal year. Considering that it is a public organization, subject to the laws, we performed two simulations: the first, following the signs for inventory management of Instruction No. 205 (IN 205 ), from Secretary of Public Administration of the Presidency ( SEDAP / PR ), and the second, based on the literature specializing in inventory management hospital. The results of two simulations were compared to the current policy of replenishment system. Among these results are: an indication that the system for continuous replenishment reorder point based on IN 205 provides lower levels of safety stock and maximum stock, enables a 17% reduction in the amount spent for the full replenishment of inventories, in other words, decreasing capital assets, as well as reduction in stock quantity, also the simulation made from the literature has indicated parameters that prevent the application of this technique to all items of the sample. Hence, a change in inventory management of HUOL, with the application of the continuous replenishment according to IN 205, provides a significant reduction in acquisition costs of medical and hospital medicine

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uma equação de regressão múltipla MOS (da sigla em inglês para Model Output Statistics), para previsão da temperatura mínima diária do ar na cidade de Bauru, estado de São Paulo, é desenvolvida. A equação de regressão múltipla, obtida usando análise de regressão stepwise, tem quatro preditores, três do modelo numérico global do Centro de Previsão de Tempo e Estudos Climáticos (CPTEC) e um observacional da estação meteorológica do Instituto de Pesquisas Meteorológicas (IPMet), Bauru. Os preditores são prognósticos para 24 horas do modelo global, válidos para 00:00GMT, da temperatura em 1000hPa, vento meridional em 850hPa e umidade relativa em 1000hPa, e temperatura observada às 18:00GMT. Esses quatro preditores explicam, aproximadamente, 80% da variância total do preditando, com erro quadrático médio de 1,4°C, que é aproximadamente metade do desvio padrão da temperatura mínima diária do ar observada na estação do IPMet. Uma verificação da equação MOS com uma amostra independente de 47 casos mostra que a previsão não se deteriora significativamente quando o preditor observacional for desconsiderado. A equação MOS, com ou sem esse preditor, produz previsões com erro absoluto menor do que 1,5°C em 70% dos casos examinados. Este resultado encoraja a utilização da técnica MOS para previsão operacional da temperatura mínima e seu desenvolvimento para outros elementos do tempo e outras localidades.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The environmental analysis is an important tool used in forecasting and mitigation of environmental problems. Focusing on the occupation of marginal areas of the Corumbataí River in an urban stretch in the city of Rio Claro (SP), this study aimed to gather information on situations of risk, both to the environment and the population, verified in that area. Through field observation and in specific studies, the geological and geotechnical aspects, the characteristics of surface waters and aspects of urbanization were analyzed. The results show that the environmental problems diagnosed are related to lack of planning in the occupation of the area. Moreover, the natural characteristics of the physical environment expose people to risks such as floods and soil slides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fuzzy ruled-based system was developed in this study and resulted in an index indicating the level of uncertainty related to commercial transactions between cassava growers and their dealers. The fuzzy system was developed based on Transaction Cost Economics approach. The fuzzy system was developed from input variables regarding information sharing between grower and dealer on “Demand/purchase Forecasting”, “Production Forecastingand “Production Innovation”. The output variable is the level of uncertainty regarding the transaction between seller and buyer agent, which may serve as a system for detecting inefficiencies. Evidences from 27 cassava growers registered in the Regional Development Offices of Tupa and Assis, São Paulo, Brazil, and 48 of their dealers supported the development of the system. The mathematical model indicated that 55% of the growers present a Very High level of uncertainty, 33% present Medium or High. The others present Low or Very Low level of uncertainty. From the model, simulations of external interferences can be implemented in order to improve the degree of uncertainty and, thus, lower transaction costs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study summarises all the accessible data on old German chemical weapons dumped in the Baltic Sea. Mr. Goncharov formulated a concept of ecological impact evaluation of chemical warfare agents (CWA) on the marine environment and structured a simulation model adapted to the specific character of the hydrological condition and hydrobiological subjects of the Bornholm Deep. The mathematical model he has created describes the spreading of contaminants by currents and turbulence in the near bottom boundary layer. Parameters of CWA discharge through corrosion of canisters were given for various kinds of bottom sediments with allowance for current velocity. He created a method for integral estimations and a computer simulation model and completed a forecast for CWA "Mustard", which showed that in normal hydrometeorological conditions there are local toxic plumes drifting along the bottom for a distance of up to several kilometres. With storm winds the toxic plumes from separate canisters interflow and lengthen and can reach fishery areas near Bornholm Island. When salt water from the North Sea flows in, the length of toxic zones can increase up to and over 100 kilometres and toxic water masses can spread into the northern Baltic. On this basis, Mr. Goncharov drew up recommendations to reduce dangers for human ecology and proposed the creation of a special system for the forecasting and remote sensing of the environmental conditions of CWA burial places.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rising fuel prices and environmental concerns are threatening the stability of current electrical grid systems. These factors are pushing the automobile industry towards more effcient, hybrid vehicles. Current trends show petroleum is being edged out in favor of electricity as the main vehicular motive force. The proposed methods create an optimized charging control schedule for all participating Plug-in Hybrid Electric Vehicles in a distribution grid. The optimization will minimize daily operating costs, reduce system losses, and improve power quality. This requires participation from Vehicle-to-Grid capable vehicles, load forecasting, and Locational Marginal Pricing market predictions. Vehicles equipped with bidirectional chargers further improve the optimization results by lowering peak demand and improving power quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Easing of economic sanctions by Western countries in 2012 augmented the prospect that Myanmar will expand its exports. On the other hand, a sharp rise in natural resource exports during the sanctions brings in a concern about the "Dutch disease". This study projects Myanmar's export potential by calculating counterfactual export values with an augmented gravity model that takes into account the effects of natural resource exports on non-resource exports. Without taking into account the effects of natural resource exports, the counterfactual predicted values of non-resource exports during 2004–2011 are more than five times larger than the actual exports. If we take into account the effects, however, the predicted values are smaller than the actual exports. The empirical results imply that the "Dutch disease" is at stake in Myanmar than any other Southeast Asian countries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Air pollution is a big threat and a phenomenon that has a specific impact on human health, in addition, changes that occur in the chemical composition of the atmosphere can change the weather and cause acid rain or ozone destruction. Those are phenomena of global importance. The World Health Organization (WHO) considerates air pollution as one of the most important global priorities. Salamanca, Gto., Mexico has been ranked as one of the most polluted cities in this country. The industry of the area led to a major economic development and rapid population growth in the second half of the twentieth century. The impact in the air quality is important and significant efforts have been made to measure the concentrations of pollutants. The main pollution sources are locally based plants in the chemical and power generation sectors. The registered concerning pollutants are Sulphur Dioxide (SO2) and particles on the order of ∼10 micrometers or less (PM10). The prediction in the concentration of those pollutants can be a powerful tool in order to take preventive measures such as the reduction of emissions and alerting the affected population. In this PhD thesis we propose a model to predict concentrations of pollutants SO2 and PM10 for each monitoring booth in the Atmospheric Monitoring Network Salamanca (REDMAS - for its spanish acronym). The proposed models consider the use of meteorological variables as factors influencing the concentration of pollutants. The information used along this work is the current real data from REDMAS. In the proposed model, Artificial Neural Networks (ANN) combined with clustering algorithms are used. The type of ANN used is the Multilayer Perceptron with a hidden layer, using separate structures for the prediction of each pollutant. The meteorological variables used for prediction were: Wind Direction (WD), wind speed (WS), Temperature (T) and relative humidity (RH). Clustering algorithms, K-means and Fuzzy C-means, are used to find relationships between air pollutants and weather variables under consideration, which are added as input of the RNA. Those relationships provide information to the ANN in order to obtain the prediction of the pollutants. The results of the model proposed in this work are compared with the results of a multivariate linear regression and multilayer perceptron neural network. The evaluation of the prediction is calculated with the mean absolute error, the root mean square error, the correlation coefficient and the index of agreement. The results show the importance of meteorological variables in the prediction of the concentration of the pollutants SO2 and PM10 in the city of Salamanca, Gto., Mexico. The results show that the proposed model perform better than multivariate linear regression and multilayer perceptron neural network. The models implemented for each monitoring booth have the ability to make predictions of air quality that can be used in a system of real-time forecasting and human health impact analysis. Among the main results of the development of this thesis we can cite: A model based on artificial neural network combined with clustering algorithms for prediction with a hour ahead of the concentration of each pollutant (SO2 and PM10) is proposed. A different model was designed for each pollutant and for each of the three monitoring booths of the REDMAS. A model to predict the average of pollutant concentration in the next 24 hours of pollutants SO2 and PM10 is proposed, based on artificial neural network combined with clustering algorithms. Model was designed for each booth of the REDMAS and each pollutant separately. Resumen La contaminación atmosférica es una amenaza aguda, constituye un fenómeno que tiene particular incidencia sobre la salud del hombre. Los cambios que se producen en la composición química de la atmósfera pueden cambiar el clima, producir lluvia ácida o destruir el ozono, fenómenos todos ellos de una gran importancia global. La Organización Mundial de la Salud (OMS) considera la contaminación atmosférica como una de las más importantes prioridades mundiales. Salamanca, Gto., México; ha sido catalogada como una de las ciudades más contaminadas en este país. La industria de la zona propició un importante desarrollo económico y un crecimiento acelerado de la población en la segunda mitad del siglo XX. Las afectaciones en el aire son graves y se han hecho importantes esfuerzos por medir las concentraciones de los contaminantes. Las principales fuentes de contaminación son fuentes fijas como industrias químicas y de generación eléctrica. Los contaminantes que se han registrado como preocupantes son el Bióxido de Azufre (SO2) y las Partículas Menores a 10 micrómetros (PM10). La predicción de las concentraciones de estos contaminantes puede ser una potente herramienta que permita tomar medidas preventivas como reducción de emisiones a la atmósfera y alertar a la población afectada. En la presente tesis doctoral se propone un modelo de predicción de concentraci ón de los contaminantes más críticos SO2 y PM10 para cada caseta de monitorización de la Red de Monitorización Atmosférica de Salamanca (REDMAS). Los modelos propuestos plantean el uso de las variables meteorol ógicas como factores que influyen en la concentración de los contaminantes. La información utilizada durante el desarrollo de este trabajo corresponde a datos reales obtenidos de la REDMAS. En el Modelo Propuesto (MP) se aplican Redes Neuronales Artificiales (RNA) combinadas con algoritmos de agrupamiento. La RNA utilizada es el Perceptrón Multicapa con una capa oculta, utilizando estructuras independientes para la predicción de cada contaminante. Las variables meteorológicas disponibles para realizar la predicción fueron: Dirección de Viento (DV), Velocidad de Viento (VV), Temperatura (T) y Humedad Relativa (HR). Los algoritmos de agrupamiento K-means y Fuzzy C-means son utilizados para encontrar relaciones existentes entre los contaminantes atmosféricos en estudio y las variables meteorológicas. Dichas relaciones aportan información a las RNA para obtener la predicción de los contaminantes, la cual es agregada como entrada de las RNA. Los resultados del modelo propuesto en este trabajo son comparados con los resultados de una Regresión Lineal Multivariable (RLM) y un Perceptrón Multicapa (MLP). La evaluación de la predicción se realiza con el Error Medio Absoluto, la Raíz del Error Cuadrático Medio, el coeficiente de correlación y el índice de acuerdo. Los resultados obtenidos muestran la importancia de las variables meteorológicas en la predicción de la concentración de los contaminantes SO2 y PM10 en la ciudad de Salamanca, Gto., México. Los resultados muestran que el MP predice mejor la concentración de los contaminantes SO2 y PM10 que los modelos RLM y MLP. Los modelos implementados para cada caseta de monitorizaci ón tienen la capacidad para realizar predicciones de calidad del aire, estos modelos pueden ser implementados en un sistema que permita realizar la predicción en tiempo real y analizar el impacto en la salud de la población. Entre los principales resultados obtenidos del desarrollo de esta tesis podemos citar: Se propone un modelo basado en una red neuronal artificial combinado con algoritmos de agrupamiento para la predicción con una hora de anticipaci ón de la concentración de cada contaminante (SO2 y PM10). Se diseñó un modelo diferente para cada contaminante y para cada una de las tres casetas de monitorización de la REDMAS. Se propone un modelo de predicción del promedio de la concentración de las próximas 24 horas de los contaminantes SO2 y PM10, basado en una red neuronal artificial combinado con algoritmos de agrupamiento. Se diseñó un modelo para cada caseta de monitorización de la REDMAS y para cada contaminante por separado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Con la finalidad de ayudar a la creación y desarrollo de modelos de predicción y simulación que permitan al ciudadano/administraciones publicas gestionar el consumo energético de forma más eficiente y respetuosa con el medio ambiente, se ha implementado un sistema de gestión de datos de indicadores energéticos. En 2007 la UE creó una directiva conocida como "20/20/20" en la que la Unión Europea se compromete a ahorrar un 20% del consumo anual de energía primaria desde esa fecha a 2020. En 2009 la Comisión Europea ha llegado a la conclusión de que con las medidas propuestas en dicha directiva no se podría alcanzar el objetivo de reducción del 20% del consumo energético previsto para el 2020, quedándose en menos de la mitad. Para dar un nuevo impulso a la eficiencia energética se redacta una propuesta de directiva: 2011/0172(COD). En esta directiva se obliga a los estados miembros a potenciar y ampliar la información estadística agregada sobre sus clientes finales (los perfiles de carga, la segmentación de los clientes, su ubicación geográfica, etc ). La Unión Europea plantea que incrementar el volumen y la accesibilidad de los datos de consumo energético, ayudará de forma significativa a alcanzar los objetivos. En este marco, parece lógico afirmar que un banco de datos de indicadores energéticos universalmente accesible puede contribuir de un modo efectivo al aumento de la eficiencia energética. Como aplicativo de este PFC se ha desarrollado una aplicación que permite la definición y almacenamiento de indicadores energéticos, en la que los diferentes sistemas, propietarios o abiertos, pueden volcar y extraer datos de una forma poco costosa. Se ha pretendido realizar una aplicación lo más abierta posible, tanto desde el punto de vista de la funcionalidad, permitiendo la definición del propio indicador a través del sistema, como desde el punto de vista de la implementación, usando únicamente código abierto para el desarrollo de la misma. ABSTRACT. In order to assist in the creation and development of forecasting and simulation models that enable citizens / public authorities manage energy consumption more efficient and environmentally friendly, we have implemented a data management system of energy indicators. In 2007 the EU created a policy known as " 20/20/20 " in which the European Union is committed to saving 20 % of the annual primary energy consumption from that date to 2020 . In 2009 the European Commission has concluded that the measures proposed in the directive could not achieve the goal of 20% reduction in energy consumption expected for 2020 , staying in less than half. To give new impetus to energy efficiency is drawn up a draft directive : 2011/0172 ( COD ) . This directive obliges member states to strengthen and expand aggregate statistical information on their final customers ( load profiles , customer segmentation , geographic location, etc. ) . The European Union argues that increasing the volume and accessibility ofenergy data , will significantly help to achieve the objectives . In this context , it seems logical to say that a database of universally accessible energy indicators can contribute in an effective way to increase energy efficiency. As of this PFC application has developed an application that allows the definition and storage of energy indicators , in which different systems, proprietary or open, can tip and extract data from an inexpensive way. We have tried to make an application as open as possible , both from the point of view of functionality , allowing the definition of the indicator itself through the system , and from the point of view of implementation, using only open source development thereof.