999 resultados para Food wastes
Resumo:
In this paper, we present two Partial Least Squares Regression (PLSR) models for compressive and flexural strength responses of a concrete composite material reinforced with pultrusion wastes. The main objective is to characterize this cost-effective waste management solution for glass fiber reinforced polymer (GFRP) pultrusion wastes and end-of-life products that will lead, thereby, to a more sustainable composite materials industry. The experiments took into account formulations with the incorporation of three different weight contents of GFRP waste materials into polyester based mortars, as sand aggregate and filler replacements, two waste particle size grades and the incorporation of silane adhesion promoter into the polyester resin matrix in order to improve binder aggregates interfaces. The regression models were achieved for these data and two latent variables were identified as suitable, with a 95% confidence level. This technological option, for improving the quality of GFRP filled polymer mortars, is viable thus opening a door to selective recycling of GFRP waste and its use in the production of concrete-polymer based products. However, further and complementary studies will be necessary to confirm the technical and economic viability of the process.
Resumo:
Glass fibre-reinforced plastics (GFRP) have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remoulded, and complex composition of the composite itself. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, efforts were made in order to recycle grinded GFRP waste, proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, were incorporated into polyester based mortars as fine aggregate and filler replacements at different load contents and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behavior over unmodified polyester based mortars, thus indicating the feasibility of the GFRP industrial waste reuse into concrete-polymer composite materials.
Resumo:
The preliminary results from a bipolar industrial solidstate based Marx generator, developed for the food industry, capable of delivering 25 kV/250 A positive and negative pulses with 12 kW average power, are presented and discussed. This modular topology uses only four controlled switches per cell, 27 cells in total that can be charged up to 1000V each, the two extra cells are used for droop compensation. The triggering signals for all the switches are generated by a FPGA. Considering that biomaterials are similar to resistive type loads, experimental results from this new bipolar 25 kV modulator into resistive loads are presented and discussed.
Resumo:
Glass fibre-reinforced plastics (GFRP) have been considered inherently difficult to recycle due to both: crosslinked nature of thermoset resins, which cannot be remoulded, and complex composition of the composite itself. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, efforts were made in order to recycle grinded GFRP waste, proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, were incorporated into polyester based mortars as fine aggregate and filler replacements at different load contents and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behaviour over unmodified polyester based mortars, thus indicating the feasibility of the GFRP industrial waste reuse into concrete-polymer composite materials.
Resumo:
The Salmonella serovars involved in 25 food poisoning episodes which occurred in the Southeast and South of Brazil from 1982 to 1991 were identified. The most frequently detected serotype was S. Typhimurium (13/25, 52%), and the food most frequently involved in the transmission of Salmonella was homemade mayonnaise. The need to set up a permanent program of epidemiologic alert for food poisoning is emphasized.
Resumo:
In order to verify the presence of intestinal parasites in food handlers, stool samples were collected from 104 cooks and their helpers that were working in food preparation in 20 public elementary schools, in various areas of the city of Uberlândia, Minas Gerais, Brazil. The samples were collected during the months of November and December, 1988, in plastic flasks containing a 10% formaldehyde solution and processed by the Hoffmann, Pons & Janer method. The sediment was examined using triplicate slides. All individuals were females aged between 24 to 69 years. Intestinal parasites were found in 85.0% of the studied schools and 47.1% of the studied food handlers (cooks and helpers) were found to be positive. Among the 49 infected food handlers, 32 (65.3%) carried a single parasite and 17 (34.7%) carried two parasites. The following intestinal parasites were found: Giardia lamblia (21.1%), Entamoeba coli (21.1%), hookworms (9.6%), Ascaris lumbricoides (5.8%), Entamoeba histolytica (2.9%), Hymenolepis nana (1.9%), Strongyloides stercoralis (1.0%). These data emphasize the need for a rigid semi-annual control in all school food handlers, including diagnosis, specific treatment and orientation about the mechanisms of transmission of the intestinal parasites.
Resumo:
Dissertação apresentada para a obtenção do grau de doutor em Bioquímica pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Laboratory investigation of botulism from 1982 to 2001 confirmed the occurrence of eight positive outbreaks/cases of botulism in Brazil. From those, type A botulism was observed in seven of them. Biological material of one case (serum and feces) was positive in the first step of the bioassay, but the amount of sample was not sufficient for typification. One of the outbreaks that occurred in 2001 was negative for botulinum toxin in samples of serum, gastric washing and feces, collected eight days before the onset of the symptoms in the affected person who was clinically diagnosed as presenting the disease. Other two cases presenting compatible clinical diagnoses presented negative results. However, in those cases, the collection of samples was (1) after antiserum administration or (2) later than eight days of the onset of symptoms. Investigation was performed by mouse bioassay, as described in the Compendium of Methods for the Microbiological Examination of Foods (compiled by American Public Health Association - APHA)11, using specific antiserum from Centers for Disease Control (CDC), USA.
Resumo:
272 isolates of Salmonella Enteritidis (111 isolated from frozen broiler chicken carcasses, 126 from human food and other biological materials involved in food poisoning outbreaks and 35 from different poultry materials) were selected for phage typing. From these, 111 were phage typed, 57.65% being classified as phage type 4, 32.43% as phage type 4a, 3.60% as phage type 6a and 0.90% as phage type 7, whereas 5.40% samples were not phage typeable. The predominance of phage type 4 is in agreement with the results published worldwide, and reinforces the need for studies related to the epidemiological meaning of these findings.
Resumo:
A gold nanoparticle-coated screen-printed carbon electrode was used as the transducer in the development of an electrochemical immunosensor for Ara h 1 (a major peanut allergen) detection in food samples. Gold nanoparticles (average diameter=32 nm) were electrochemically generated on the surface of screen-printed carbon electrodes. Two monoclonal antibodies were used in a sandwich-type immunoassay and the antibody–antigen interaction was electrochemically detected through stripping analysis of enzymatically (using alkaline phosphatase) deposited silver. The total time of the optimized immunoassay was 3 h 50 min. The developed immunosensor allowed the quantification of Ara h 1 between 12.6 and 2000 ng/ml, with a limit of detection of 3.8 ng/ml, and provided precise (RSD <8.7%) and accurate (recovery >96.6%) results. The immunosensor was successfully applied to the analysis of complex food matrices (cookies and chocolate), being able to detect Ara h 1 in samples containing 0.1% of peanut.
Resumo:
Consumers nowadays are playing an active role in their health-care. A special case is the increasing number of women, who are reluctant to use exogenous hormone therapy for the treatment of menopausal symptoms and are looking for complementary therapies. However, food supplements are not clearly regulated in Europe. The EFSA has only recently begun to address the issues of botanical safety and purity regulation, leading to a variability of content, standardization, dosage, and purity of available products. In this study, isoflavones (puerarin, daidzin, genistin, daidzein, glycitein, genistein, formononetin, prunetin, and biochanin A) from food supplements (n = 15) for menopausal symptoms relief are evaluated and compared with the labelled information. Only four supplements complied with the recommendations made by the EC on the tolerable thresholds. The intestinal bioavailability of these compounds was investigated using Caco-2 cells. The apparent permeability coefficients of the selected isoflavonoids across the Caco-2 cells were affected by the isoflavone concentration and product matrix.
Resumo:
A novel electrochemical sensor for ochratoxin A (OTA) detection was fabricated through the modification of a glassy carbon electrode (GCE) with multiwalled carbon nanotubes (MWCNTs) and a molecularly imprinted polymer (MIP). The MWCNTs dramatically promoted the sensitivity of the developed sensor, while polypyrrole (PPy) imprinted with OTA served as the selective recognition element. The imprinted PPy film was prepared by electropolymerization of pyrrole in the presence of OTA as a template molecule via cyclic voltammetry (CV). The electrochemical oxidation of OTA at the developed sensor was investigated by CV and differential pulse voltammetry (DPV). The developed MIP/MWCNT/GCE sensor showed a linear relationship, when using DPV, between peak current intensity and OTA concentration in the range between 0.050 and 1.0 μM, with limits of detection (LOD) and quantification of 0.0041 μM (1.7 μg/L) and 0.014 μM (5.7 μg/L) respectively. With the developed sensor precise results were obtained; relative standard deviations of 4.2% and 7.5% in the evaluation of the repeatability and reproducibility, respectively. The MIP/MWCNT/GCE sensor is simple to fabricate and easy to use and was successfully applied to the determination of OTA in spiked beer and wine samples, with recoveries between 84 and 104%, without the need of a sample pre-treatment step.
Resumo:
Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both the cross-linked nature of thermoset resins, which cannot be remoulded, and the complex composition of the composite itself, which includes glass fibres, polymer matrix and different types of inorganic fillers. Hence, to date, most of the thermoset based GFRP waste is being incinerated or landfilled leading to negative environmental impacts and additional costs to producers and suppliers. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, the effect of the incorporation of mechanically recycled GFRP pultrusion wastes on flexural and compressive behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates (0%, 4%, 8% and 12%, w/w), with distinct size grades (coarse fibrous mixture and fine powdered mixture), were incorporated into polyester PM as sand aggregates and filler replacements. The effect of the incorporation of a silane coupling agent was also assessed. Experimental results revealed that GFRP waste filled polymer mortars show improved mechanical behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse as raw material in concrete-polymer composites.
Resumo:
This study reports on the occurrence of enteroparasites based on data from an ethnographic study of food handlers in the city of Cascavel, Paraná, Brazil. Fecal material from 343 food handlers of both sexes, between 14 and 75 years of age, was analyzed using Lutz, modified Ritchie and Ziehl-Neelsen techniques. Ethnographic relationships were investigated by means of specific questionnaires. Positive fecal samples were found for 131 (38.2%) handlers. Endolimax nana (67.9%) was the predominant species, followed by Entamoeba coli (35.9%), Blastocystis hominis (28.2%), Entamoeba histolytica/dispar (10.1%) and Giardia duodenalis (8.4%). Protozoan infections were more common than helminth infections (p = 0.00). The positive results for some parasites were associated with the male sex, professional category, and the performance of other activities (p < 0.05). The high overall occurrence of enteroparasites found indicates improper hygiene and sanitation conditions. Effective educational measures should be implemented to prevent the transfer of pathogenic organisms to food via handling.