967 resultados para Focused Ion Beam
Resumo:
Radiocarbon and uranium-thorium dating results are presented from a genus of calcitic Antarctic cold-water octocorals (family Coralliidae), which were collected from the Marie Byrd Seamounts in the Amundsen Sea (Pacific sector of the Southern Ocean) and which to date have not been investigated geochemically. The geochronological results are set in context with solution and laser ablation-based element/Ca ratios (Li, B, Mg, Mn, Sr, Ba, U, Th). Octocoral radiocarbon ages on living corals are in excellent agreement with modern ambient deep-water D14C, while multiple samples of individual fossil coral specimens yielded reproducible radiocarbon ages. Provided that local radiocarbon reservoir ages can be derived for a given time, fossil Amundsen Sea octocorals should be reliably dateable by means of radiocarbon. In contrast to the encouraging radiocarbon findings, the uranium-series data are more difficult to interpret. The uranium concentration of these calcitic octocorals is an order of magnitude lower than in the aragonitic hexacorals that are conventionally used for geochronological investigations. While modern and Late Holocene octocorals yield initial d234U in good agreement with modern seawater, our results reveal preferential inward diffusion of dissolved alpha-recoiled 234U and its impact on fossil coral d234U. Besides alpha-recoil related 234U diffusion, high-resolution sampling of two fossil octocorals further demonstrates that diagenetic uranium mobility has offset apparent coral U-series ages. Combined with the preferential alpha-recoil 234U diffusion, this process has prevented fossil octocorals from preserving a closed system U-series calendar age for longer than a few thousand years. Moreover, several corals investigated contain significant initial thorium, which cannot be adequately corrected for because of an apparently variable initial 232Th/230Th. Our results demonstrate that calcitic cold-water corals are unsuitable for reliable U-series dating. Mg/Ca ratios within single octocoral specimens are internally strikingly homogeneous, and appear promising in terms of their response to ambient temperature. Magnesium/lithium ratios are significantly higher than usually observed in other deep marine calcifiers and for many of our studied corals are remarkably close to seawater compositions. Although this family of octocorals is unsuitable for glacial deep-water D14C reconstructions, our findings highlight some important differences between hexacoral (aragonitic) and octocoral (calcitic) biomineralisation. Calcitic octocorals could still be useful for trace element and some isotopic studies, such as reconstruction of ambient deep water neodymium isotope composition or pH, via boron isotopic measurements.
Resumo:
An improved procedure for lithium isotope analysis using Li3PO4 as the ion source has been investigated for application to geological samples. The 7Li/6Li ratio is measured using double rhenium filament thermal ionization mass spectrometry in which isotopic fractionation is minimized at high temperatures. The method produces a stable, high intensity Li+ ion beam that allows measurement of nanogram quantities of lithium. This results in a reduction in sample size of up to 1000 times relative to that required for the established Li2BO2+ method while maintaining a comparable precision of better than 1? (1 sigma). Replicate analyses of the NBS L-SVEC Li2CO3 standard yielded a mean value of 12.1047+/-0.0043 (n=21), which is close to the reported absolute value of 12.02+/-0.03. Intercalibration with a wide range of geological samples shows excellent agreement between the Li3PO4 and Li2BO2+ techniques. Replicate analyses of seawater and a fresh submarine basalt display high precision results that agree with previous measurements. Taking advantage of the high ionization efficiency of the phosphate ion source, we have made the first measurements of the lithium concentration (by isotope dilution) and isotopic composition of calcareous foraminiferal tests and other marine carbonates. Preliminary results indicate that substantial lithium exchange occurs between carbonate sediments and their interstitial waters. In addition, a possible link between lithium paleoceanography and paleoclimate during the last 1000 ky may be derived from planktonic foraminiferal tests. This highly sensitive technique can be applied in the examination of low lithium reservoirs and thereby provide insight into some fundamental aspects of lithium geochemistry.
Resumo:
The energy and specific energy absorbed in the main cell compartments (nucleus and cytoplasm) in typical radiobiology experiments are usually estimated by calculations as they are not accessible for a direct measurement. In most of the work, the cell geometry is modelled using the combination of simple mathematical volumes. We propose a method based on high resolution confocal imaging and ion beam analysis (IBA) in order to import realistic cell nuclei geometries in Monte-Carlo simulations and thus take into account the variety of different geometries encountered in a typical cell population. Seventy-six cell nuclei have been imaged using confocal microscopy and their chemical composition has been measured using IBA. A cellular phantom was created from these data using the ImageJ image analysis software and imported in the Geant4 Monte-Carlo simulation toolkit. Total energy and specific energy distributions in the 76 cell nuclei have been calculated for two types of irradiation protocols: a 3 MeV alpha particle microbeam used for targeted irradiation and a 239Pu alpha source used for large angle random irradiation. Qualitative images of the energy deposited along the particle tracks have been produced and show good agreement with images of DNA double strand break signalling proteins obtained experimentally. The methodology presented in this paper provides microdosimetric quantities calculated from realistic cellular volumes. It is based on open-source oriented software that is publicly available.
Resumo:
The basics of laser driven neutron sources, properties and possible applications are discussed. We describe the laser driven nuclear processes which trigger neutron generation, namely, nuclear reactions induced by laser driven ion beam (ion n), thermonuclear fusion by implosion and photo-induced nuclear (gamma n) reactions. Based on their main properties, i.e. point source (<100 μm) and short durations (< ns), different applications are described, such as radiography, time-resolved spectroscopy and pump-probe experiments. Prospects on the development of laser technology suggest that, as higher intensities and higher repetition rate lasers become available (for example, using DPSSL technology), laser driven methodologies may provide neutron fluxes comparable to that achieved by accelerator driven neutron sources in the near future.
Resumo:
There is evidence of past Near-Earth-Objects (NEOs) impacts on Earth and several studies indicating that even relatively small objects are capable of causing large local damage, either directly or in combination with other phenomena, e.g. tsunamis. This paper describes a space mission concept to demonstrate some of the key technologies to rendezvous with an asteroid and accurately measure its trajectory during and after a deflection maneuver. The mission, called SIROCO, makes use of the recently proposed ion beam shepherd (IBS) concept where a stream of accelerated plasma ions is directed against the surface of a small NEO resulting in a net transmitted deflection force. We show that by carefully selecting the target NEO a measurable deflection can be obtained in a few weeks of continuous thrust with a small spacecraft and state of the art electric propulsion hardware.
Resumo:
Ion beam therapy is a valuable method for the treatment of deep-seated and radio-resistant tumors thanks to the favorable depth-dose distribution characterized by the Bragg peak. Hadrontherapy facilities take advantage of the specific ion range, resulting in a highly conformal dose in the target volume, while the dose in critical organs is reduced as compared to photon therapy. The necessity to monitor the delivery precision, i.e. the ion range, is unquestionable, thus different approaches have been investigated, such as the detection of prompt photons or annihilation photons of positron emitter nuclei created during the therapeutic treatment. Based on the measurement of the induced β+ activity, our group has developed various in-beam PET prototypes: the one under test is composed by two planar detector heads, each one consisting of four modules with a total active area of 10 × 10 cm2. A single detector module is made of a LYSO crystal matrix coupled to a position sensitive photomultiplier and is read-out by dedicated frontend electronics. A preliminary data taking was performed at the Italian National Centre for Oncological Hadron Therapy (CNAO, Pavia), using proton beams in the energy range of 93–112 MeV impinging on a plastic phantom. The measured activity profiles are presented and compared with the simulated ones based on the Monte Carlo FLUKA package.
Resumo:
Motivado por los últimos hallazgos realizados gracias a los recientes avances tecnológicos y misiones espaciales, el estudio de los asteroides ha despertado el interés de la comunidad científica. Tal es así que las misiones a asteroides han proliferado en los últimos años (Hayabusa, Dawn, OSIRIX-REx, ARM, AIMS-DART, ...) incentivadas por su enorme interés científico. Los asteroides son constituyentes fundamentales en la evolución del Sistema Solar, son además grandes concentraciones de valiosos recursos naturales, y también pueden considerarse como objectivos estratégicos para la futura exploración espacial. Desde hace tiempo se viene especulando con la posibilidad de capturar objetos próximos a la Tierra (NEOs en su acrónimo anglosajón) y acercarlos a nuestro planeta, permitiendo así un acceso asequible a los mismos para estudiarlos in-situ, explotar sus recursos u otras finalidades. Por otro lado, las asteroides se consideran con frecuencia como posibles peligros de magnitud planetaria, ya que impactos de estos objetos con la Tierra suceden constantemente, y un asteroide suficientemente grande podría desencadenar eventos catastróficos. Pese a la gravedad de tales acontecimientos, lo cierto es que son ciertamente difíciles de predecir. De hecho, los ricos aspectos dinámicos de los asteroides, su modelado complejo y las incertidumbres observaciones hacen que predecir su posición futura con la precisión necesaria sea todo un reto. Este hecho se hace más relevante cuando los asteroides sufren encuentros próximos con la Tierra, y más aún cuando estos son recurrentes. En tales situaciones en las cuales fuera necesario tomar medidas para mitigar este tipo de riesgos, saber estimar con precisión sus trayectorias y probabilidades de colisión es de una importancia vital. Por ello, se necesitan herramientas avanzadas para modelar su dinámica y predecir sus órbitas con precisión, y son también necesarios nuevos conceptos tecnológicos para manipular sus órbitas llegado el caso. El objetivo de esta Tesis es proporcionar nuevos métodos, técnicas y soluciones para abordar estos retos. Las contribuciones de esta Tesis se engloban en dos áreas: una dedicada a la propagación numérica de asteroides, y otra a conceptos de deflexión y captura de asteroides. Por lo tanto, la primera parte de este documento presenta novedosos avances de apliación a la propagación dinámica de alta precisión de NEOs empleando métodos de regularización y perturbaciones, con especial énfasis en el método DROMO, mientras que la segunda parte expone ideas innovadoras para la captura de asteroides y comenta el uso del “ion beam shepherd” (IBS) como tecnología para deflectarlos. Abstract Driven by the latest discoveries enabled by recent technological advances and space missions, the study of asteroids has awakened the interest of the scientific community. In fact, asteroid missions have become very popular in the recent years (Hayabusa, Dawn, OSIRIX-REx, ARM, AIMS-DART, ...) motivated by their outstanding scientific interest. Asteroids are fundamental constituents in the evolution of the Solar System, can be seen as vast concentrations of valuable natural resources, and are also considered as strategic targets for the future of space exploration. For long it has been hypothesized with the possibility of capturing small near-Earth asteroids and delivering them to the vicinity of the Earth in order to allow an affordable access to them for in-situ science, resource utilization and other purposes. On the other side of the balance, asteroids are often seen as potential planetary hazards, since impacts with the Earth happen all the time, and eventually an asteroid large enough could trigger catastrophic events. In spite of the severity of such occurrences, they are also utterly hard to predict. In fact, the rich dynamical aspects of asteroids, their complex modeling and observational uncertainties make exceptionally challenging to predict their future position accurately enough. This becomes particularly relevant when asteroids exhibit close encounters with the Earth, and more so when these happen recurrently. In such situations, where mitigation measures may need to be taken, it is of paramount importance to be able to accurately estimate their trajectories and collision probabilities. As a consequence, advanced tools are needed to model their dynamics and accurately predict their orbits, as well as new technological concepts to manipulate their orbits if necessary. The goal of this Thesis is to provide new methods, techniques and solutions to address these challenges. The contributions of this Thesis fall into two areas: one devoted to the numerical propagation of asteroids, and another to asteroid deflection and capture concepts. Hence, the first part of the dissertation presents novel advances applicable to the high accuracy dynamical propagation of near-Earth asteroids using regularization and perturbations techniques, with a special emphasis in the DROMO method, whereas the second part exposes pioneering ideas for asteroid retrieval missions and discusses the use of an “ion beam shepherd” (IBS) for asteroid deflection purposes.
Resumo:
Neste trabalho, foi utilizado o método de deposição assistida por feixe de íons (IBAD na sigla em inglês) para produção de filmes finos de nitreto de índio em substratos de silício (111) e Safira-C. Variando as condições de deposição e utlilizando a técnica de difração de raios-X, investigou-se com o intuito de obter os parâmetros que resultam em filmes finos com melhor grau de cristalinidade. Os filmes produzidos a 380C apresentaram alta cristalinidade, superior àqueles a 250C. Temperaturas muito superiores a 380C não ocasionam a formação de filme cristalino de InN, como foi observado ao utilizar a temperatura de 480C; o mesmo se observa ao utilizar temperatura ambiente. Na temperatura considerada adequada ,de 380C, obteve-se que a utilização de Ra, ou seja, a razão de fluxo de partículas entre o nitrogênio e índio, em torno de 2,3 permite obter um melhor grau de cristalinização, o qual decresce conforme se diverge desse valor. A comparação entre difratogramas de amostras produzidas com e sem a evaporação prévia de titânio, o qual é possível observar um deslocamento dos picos do InN, indicam que o efeito Gettering permite a redução de impurezas no filme, principalmente de oxigênio. Utilizou-se a técnica de Retroespalhamento de Rutherford para obtenção da composição dos elementos e o perfil de profundidade. Notou-se uma forte mistura dos elementos do substrato de silício e safira com o nitreto de índio mesmo próximos a superfície. A presença indesejável de impurezas, principalmente o oxigênio, durante a deposição de filmes finos é praticamente inevitável. Desta forma, cálculos ab initio baseados na Teoria do Funcional da Densidade (DFT) foram realizados para investigar defeitos isolados e complexos de oxigênio no nitreto de índio e a sua influência nas propriedades óticas. Considerou-se diferentes concentrações de oxigênio (x=2,76, 8,32, 11,11 e 22,22%) aplicando-se o método PBEsolGGA e TB-mBJ para o tratamento da energia e potencial de troca e correlação. Obteve-se que é energeticamente favorável o oxigênio existir principalmente como defeito carregado e isolado. Os resultados utilizando a aproximação de TB-mBJ indicam um estreitamento do bandgap conforme a concentração de oxigênio aumenta. Entretanto, a alta contribuição do efeito de Moss-Burstein resulta num efetivo alargamento do band gap, gerando valores de band gap ótico maiores que no do bulk de nitreto de índio.
Resumo:
Background: Models describing nuclear fragmentation and fragmentation fission deliver important input for planning nuclear physics experiments and future radioactive ion beam facilities. These models are usually benchmarked against data from stable beam experiments. In the future, two-step fragmentation reactions with exotic nuclei as stepping stones are a promising tool for reaching the most neutron-rich nuclei, creating a need for models to describe also these reactions. Purpose: We want to extend the presently available data on fragmentation reactions towards the light exotic region on the nuclear chart. Furthermore, we want to improve the understanding of projectile fragmentation especially for unstable isotopes. Method: We have measured projectile fragments from (10,12-18C) and B10-15 isotopes colliding with a carbon target. These measurements were all performed within one experiment, which gives rise to a very consistent data set. We compare our data to model calculations. Results: One-proton removal cross sections with different final neutron numbers (1 pxn) for relativistic C-10,C-12-18 and B10-15 isotopes impinging on a carbon target. Comparing model calculations to the data, we find that the EPAX code is not able to describe the data satisfactorily. Using ABRABLA07 on the other hand, we find that the average excitation energy per abraded nucleon needs to be decreased from 27 MeV to 8.1 MeV. With that decrease ABRABLA07 describes the data surprisingly well. Conclusions: Extending the available data towards light unstable nuclei with a consistent set of new data has allowed a systematic investigation of the role of the excitation energy induced in projectile fragmentation. Most striking is the apparent mass dependence of the average excitation energy per abraded nucleon. Nevertheless, this parameter, which has been related to final-state interactions, requires further study.
Resumo:
We review progress at the Australian Centre for Quantum Computer Technology towards the fabrication and demonstration of spin qubits and charge qubits based on phosphorus donor atoms embedded in intrinsic silicon. Fabrication is being pursued via two complementary pathways: a 'top-down' approach for near-term production of few-qubit demonstration devices and a 'bottom-up' approach for large-scale qubit arrays with sub-nanometre precision. The 'top-down' approach employs a low-energy (keV) ion beam to implant the phosphorus atoms. Single-atom control during implantation is achieved by monitoring on-chip detector electrodes, integrated within the device structure. In contrast, the 'bottom-up' approach uses scanning tunnelling microscope lithography and epitaxial silicon overgrowth to construct devices at an atomic scale. In both cases, surface electrodes control the qubit using voltage pulses, and dual single-electron transistors operating near the quantum limit provide fast read-out with spurious-signal rejection.
Resumo:
Optical metallographic techniques for grain-size measurement give unreliable results for high pressure diecast Mg-Al alloys and electron back-scattered diffraction mapping (EBSD) provides a good tool for improving the quality of these measurements. An application of EBSD mapping to this question is described, and data for some castings are presented. Ion-beam milling was needed to prepare suitable samples, and this technique is detailed. As is well-known for high pressure die castings, the grain size distribution comprises at least two populations. The mean grain size of the fine-grained population was similar in both AZ91 and AM60 and in two casting thicknesses (2 mm and 5 mm) and, contrary to previously published reports, it did not vary with depth below the surface.
Resumo:
Ta and Ta-1% W are being considered to be used as target clad materials in the LANSCE proton beam line for the material test station (MTS). To investigate the embrittlement of these materials due to oxygen contamination and proton irradiation, Ta and Ta-1 wt% W (as received and with ~400 ppm O) were exposed to a 3.5 MeV proton beam at the ion beam materials laboratory at LANL. After irradiating the samples in the proton beam, nanoindentation was performed in cross-section to investigate the hardness increase of the materials due to irradiation. The nanoindentation showed that the hardness increase due to irradiation is between 9% and 20% depending on the material. The results show good agreement with mechanical testing results on tantalum and Ta-1 wt% W after high energy proton irradiation to doses up to 23 dpa.
Resumo:
The wear behaviour of a series of chromium containing white irons has been investigated under conditions of high stress grinding abrasion using a specimen on track abrasion testing machine. The measured abrasion resistance of the irons has been explained in terms of microstructure and hardness and with respect to the wear damage observed at and beneath abraded surfaces. During abrasion material removal occurred by cracking and detachment from the matrix of eutectic carbides as well as by penetration and micromachining effects of the abrasive grits being crushed at the wearing surface. Under the particular test conditions used martensitic matrix structures gave higher resistance to abrasion than austenitic or pearlitic. However, no simple relationship was found between general hardness or matrix microhardness at wear surfaces and abrasion resistance, and the test yielded pessimistic results for austenitic irons. The fine structures of the 15% Cr and 30% Cr alloys were studied by thin foil transmission electron microscopy. It was found that both the matrix and carbide constituents could be thinned for examination at 100 Kv using conventional dishing followed by ion beam thinning. Flany of the rodlike eutectic N7C3 carbides were seen to consist of clusters of scalier rods with individual 117C3 crystals quite often containing central cores of matrix constituent. 3oth eutectic and secondary N7C3 carbides were found to contain stacking faults on planes normal to the basal plane. In the eutectic carbides in the 30A Cr iron there was evidence of an in-situ PI7C3 C. transition which had taken place during the hardening heat treatment of this alloy. In the as-cast austenitic matrix iron strain induced martensite was produced at the wear surface contributing to work hardening. The significance of these findings have been discussed in relation to wear performance.
Resumo:
Control of spatiotemporal chaos is achieved in the catalytic oxidation of CO on Pt(110) by localized modification of the kinetic properties of the surface chemical reaction. In the experiment, a small temperature heterogeneity is created on the surface by a focused laser beam. This heterogeneity constitutes a pacemaker and starts to emit target waves. These waves slowly entrain the medium and suppress the spatiotemporal chaos that is present in the absence of control. We compare this experimental result with a numerical study of the Krischer-Eiswirth-Ertl model for CO oxidation on Pt(110). We confirm the experimental findings and identify regimes where complete and partial controls are possible.
Resumo:
The lensing effects in diode end-pumped Yb:YAG laser rods and discs are studied. Two mechanisms of refractive-index changes are taken into account, thermal and electronic (due to the difference between the excited- and ground-state Yb polarisabilities), as well as pump-induced deformation of the laser crystal. Under pulsed pumping, the electronic lensing effect prevails over the thermal one in both rods and discs. In rods pumped by a highly focused cw beam, the dioptric power of the electronic lens exceeds that of the thermal lens, whereas in discs steady-state lensing is predominantly due to the thermal mechanism. © 2009 Kvantovaya Elektronika and Turpion Ltd.