971 resultados para Fluid mechanics.
Resumo:
We report here on the results of a series of experiments carried out on a turbulent spot in a distorted duct to study the effects of a divergence with straight streamlines preceded by a short stretch of transverse streamline curvature, both in the absence of any pressure gradient. It is found that the distortion produces substantial asymmetry in the spot: the angles at which the spot cuts across the local streamlines are altered dramatically (in contradiction of a hypothesis commonly made in transition zone modelling), and the Tollmien-Schlichting waves that accompany the wing tips of the spot are much stronger on the outside of the bend than on the inside. However there is no strong effect on the internal structure of the spot and the eddies therein, or on such propagation characteristics as overall spread rate and the celerities of the leading and trailing edges. Both lateral streamline curvature and non-homogeneity of the laminar boundary layer into which the spot propagates are shown to be strong factors responsible for the observed asymmetry. It is concluded that these factors produce chiefly a geometric distortion of the coherent structure in the spot, but do not otherwise affect its dynamics in any significant way.
Resumo:
Peristaltic motion of two immiscible viscous incompressible fluids in a circular tube is studied in pumping and copumping ranges under long-wavelength and low-Reynolds-number assumptions. The effect of the peripheral-layer viscosity on the time-averaged flux and the mechanical efficiency is studied. The formation and growth of the trapping zone in the core and the peripheral layer are explained. It is observed that the bolus volume in the peripheral layer increases with an increase in the viscosity ratio. The limits of the time-averaged flux (Q) over bar for trapping in the core are obtained. The trapping observed in the peripheral layer decreases in size with an increase in (Q) over bar but never disappears. The development of the complete trapping of the core fluid by the peripheral-layer fluid with an increase in the time-averaged flux is demonstrated. The effect of peripheral-layer viscosity on the reflux layer is investigated. It is also observed that the reflux occurs in the entire pumping range for all viscosity ratios and it is absent in the entire range of copumping.
Resumo:
A new formulation of the stability of boundary-layer flows in pressure gradients is presented, taking into account the spatial development of the flow and utilizing a special coordinate transformation. The formulation assumes that disturbance wavelength and eigenfunction vary downstream no more rapidly than the boundary-layer thickness, and includes all terms nominally of order R(-1) in the boundary-layer Reynolds number R. In Blasius flow, the present approach is consistent with that of Bertolotti et al. (1992) to O(R(-1)) but simpler (i.e. has fewer terms), and may best be seen as providing a parametric differential equation which can be solved without having to march in space. The computed neutral boundaries depend strongly on distance from the surface, but the one corresponding to the inner maximum of the streamwise velocity perturbation happens to be close to the parallel flow (Orr-Sommerfeld) boundary. For this quantity, solutions for the Falkner-Skan flows show the effects of spatial growth to be striking only in the presence of strong adverse pressure gradients. As a rational analysis to O(R(-1)) demands inclusion of higher-order corrections on the mean flow, an illustrative calculation of one such correction, due to the displacement effect of the boundary layer, is made, and shown to have a significant destabilizing influence on the stability boundary in strong adverse pressure gradients. The effect of non-parallelism on the growth of relatively high frequencies can be significant at low Reynolds numbers, but is marginal in other cases. As an extension of the present approach, a method of dealing with non-similar flows is also presented and illustrated. However, inherent in the transformation underlying the present approach is a lower-order non-parallel theory, which is obtained by dropping all terms of nominal order R(-1) except those required for obtaining the lowest-order solution in the critical and wall layers. It is shown that a reduced Orr-Sommerfeld equation (in transformed coordinates) already contains the major effects of non-parallelism.
Resumo:
The velocity distribution function for the steady shear flow of disks (in two dimensions) and spheres (in three dimensions) in a channel is determined in the limit where the frequency of particle-wall collisions is large compared to particle-particle collisions. An asymptotic analysis is used in the small parameter epsilon, which is naL in two dimensions and na(2)L in three dimensions, where; n is the number density of particles (per unit area in two dimensions and per unit volume in three dimensions), L is the separation of the walls of the channel and a is the particle diameter. The particle-wall collisions are inelastic, and are described by simple relations which involve coefficients of restitution e(t) and e(n) in the tangential and normal directions, and both elastic and inelastic binary collisions between particles are considered. In the absence of binary collisions between particles, it is found that the particle velocities converge to two constant values (u(x), u(y)) = (+/-V, O) after repeated collisions with the wall, where u(x) and u(y) are the velocities tangential and normal to the wall, V = (1 - e(t))V-w/(1 + e(t)), and V-w and -V-w, are the tangential velocities of the walls of the channel. The effect of binary collisions is included using a self-consistent calculation, and the distribution function is determined using the condition that the net collisional flux of particles at any point in velocity space is zero at steady state. Certain approximations are made regarding the velocities of particles undergoing binary collisions :in order to obtain analytical results for the distribution function, and these approximations are justified analytically by showing that the error incurred decreases proportional to epsilon(1/2) in the limit epsilon --> 0. A numerical calculation of the mean square of the difference between the exact flux and the approximate flux confirms that the error decreases proportional to epsilon(1/2) in the limit epsilon --> 0. The moments of the velocity distribution function are evaluated, and it is found that [u(x)(2)] --> V-2, [u(y)(2)] similar to V-2 epsilon and -[u(x)u(y)] similar to V-2 epsilon log(epsilon(-1)) in the limit epsilon --> 0. It is found that the distribution function and the scaling laws for the velocity moments are similar for both two- and three-dimensional systems.
Resumo:
A vertical jet of water impinging on a horizontal surface produces a radial film flow followed by a circular hydraulic jump. We report a phenomenon where fairly large (1 mi) drops of liquid levitate just upstream of the jump on a thin air layer between the drop and the film flow. We explain the phenomenon using lubrication theory. Bearing action both in the air film and the water film seems to be necessary to support large drops. Horizontal support is given to the drop by the hydraulic jump. A variety of drop shapes is observed depending on the volume of the drop and liquid properties. We show that interaction of the forces due to gravity, surface tension, viscosity and inertia produces these various shapes.
Resumo:
Flows with velocity profiles very different from the parabolic velocity profile can occur in the entrance region of a tube as well as in tubes with converging/diverging cross-sections. In this paper, asymptotic and numerical studies are undertaken to analyse the temporal stability of such 'non-parabolic' flows in a flexible tube in the limit of high Reynolds numbers. Two specific cases are considered: (i) developing flow in a flexible tube; (ii) flow in a slightly converging flexible tube. Though the mean velocity profile contains both axial and radial components, the flow is assumed to be locally parallel in the stability analysis. The fluid is Newtonian and incompressible, while the flexible wall is modelled as a viscoelastic solid. A high Reynolds number asymptotic analysis shows that the non-parabolic velocity profiles can become unstable in the inviscid limit. This inviscid instability is qualitatively different from that observed in previous studies on the stability of parabolic flow in a flexible tube, and from the instability of developing flow in a rigid tube. The results of the asymptotic analysis are extended numerically to the moderate Reynolds number regime. The numerical results reveal that the developing flow could be unstable at much lower Reynolds numbers than the parabolic flow, and hence this instability can be important in destabilizing the fluid flow through flexible tubes at moderate and high Reynolds number. For flow in a slightly converging tube, even small deviations from the parabolic profile are found to be sufficient for the present instability mechanism to be operative. The dominant non-parallel effects are incorporated using an asymptotic analysis, and this indicates that non-parallel effects do not significantly affect the neutral stability curves. The viscosity of the wall medium is found to have a stabilizing effect on this instability.
Resumo:
The tendency of granular materials in rapid shear flow to form non-uniform structures is well documented in the literature. Through a linear stability analysis of the solution of continuum equations for rapid shear flow of a uniform granular material, performed by Savage (1992) and others subsequently, it has been shown that an infinite plane shearing motion may be unstable in the Lyapunov sense, provided the mean volume fraction of particles is above a critical value. This instability leads to the formation of alternating layers of high and low particle concentrations oriented parallel to the plane of shear. Computer simulations, on the other hand, reveal that non-uniform structures are possible even when the mean volume fraction of particles is small. In the present study, we have examined the structure of fully developed layered solutions, by making use of numerical continuation techniques and bifurcation theory. It is shown that the continuum equations do predict the existence of layered solutions of high amplitude even when the uniform state is linearly stable. An analysis of the effect of bounding walls on the bifurcation structure reveals that the nature of the wall boundary conditions plays a pivotal role in selecting that branch of non-uniform solutions which emerges as the primary branch. This demonstrates unequivocally that the results on the stability of bounded shear how of granular materials presented previously by Wang et al. (1996) are, in general, based on erroneous base states.
Resumo:
We derive boundary conditions at a rigid wall for a granular material comprising rough, inelastic particles. Our analysis is confined to the rapid flow, or granular gas, regime in which grains interact by impulsive collisions. We use the Chapman-Enskog expansion in the kinetic theory of dense gases, extended for inelastic and rough particles, to determine the relevant fluxes to the wall. As in previous studies, we assume that the particles are spheres, and that the wall is corrugated by hemispheres rigidly attached to it. Collisions between the particles and the wall hemispheres are characterized by coefficients of restitution and roughness. We derive boundary conditions for the two limiting cases of nearly smooth and nearly perfectly rough spheres, as a hydrodynamic description of granular gases comprising rough spheres is appropriate only in these limits. The results are illustrated by applying the equations of motion and boundary conditions to the problem of plane Couette flow.
Resumo:
An experimental investigation on reverse transition from turbulent to laminar flow in a two-dimensional channel was carried out. The reverse transition occurred when Reynolds number of an initially turbulent flow was reduced below a certain value by widening the duct in the lateral direction. The experiments were conducted at Reynolds numbers of 625, 865, 980 and 1250 based on half the height of the channel and the average of the mean velocity. At all these Reynolds numbers the initially turbulent mean velocity profiles tend to become parabolic. The longitudinal and vertical velocity fluctuations ($\overline{u^{\prime 2}}$ and $\overline{v^{\prime 2}}$) averaged over the height of the channel decrease exponentially with distance downstream, but $\overline{u^{\prime}v^{\prime}} $ tends to become zero at a reasonably well-defined point. During reverse transition $\overline{u^{\prime}}\overline{v^{\prime}}/\sqrt{\overline{u^{\prime 2}}}\sqrt{\overline{v^{\prime 2}}}$ also decreases as the flow moves downstream and Lissajous figures taken with u’ and v’ signals confirm this trend. There is approximate similarly between $\overline{u^{\prime 2}} $ profiles if the value of $\overline{u^{\prime 2}_{\max}} $ and the distance from the wall at which it occurs are taken as the reference scales. The spectrum of $\overline{u^{\prime 2}} $ is almost similar at all stations and the non-dimensional spectrum is exponential in wave-number. All the turbulent quantities, when plotted in appropriate co-ordinates, indicate that there is a definite critical Reynolds number of 1400±50 for reverse transition.
Resumo:
Quartz fibre anemometers have been used (as described in subsequent papers) to survey the velocity field of turbulent free convective air flows. This paper discusses the reasons for the choice of this instrument and provides the background information for its use in this way. Some practical points concerning fibre anemometers are mentioned. The rest of the paper is a theoretical study of the response of a fibre to a turbulent flow. An approximate representation of the force on the fibre due to the velocity field and the equation for a bending beam, representing the response to this force, form the basis of a consideration of the mean and fluctuating displacement of the fibre. Emphasis is placed on the behaviour when the spectrum of the turbulence is largely in frequencies low enough for the fibre to respond effectively instantaneously (as this corresponds to the practical situation). Incomplete correlation of the turbulence along the length of the fibre is taken into account. Brief mention is made to the theory of the higher-frequency (resonant) response in the context of an experimental check on the applicability of the low-frequency theory.
Resumo:
In order to study the memory of the larger eddies in turbulent shear flow, experiments have been conducted on plane turbulent wakes undergoing transition from an initial (carefully prepared) equilibrium state to a different final one, as a result of a nearly impulsive pressure gradient. It is shown that under the conditions of the experiments the equations of motion possess self-preserving solutions in the sense of Townsend (1956), but the observed behaviour of the wake is appreciably different when the pressure gradient is not very small, as the flow goes through a slow relaxation process before reaching final equilibrium. Measurements of the Reynolds stresse show that the approach to a new equilibrium state is exponential, with a relaxation length of the order of 103 momentum thicknesses. It is suggested that a flow satisfying the conditions required by a self-preservation analysis will exhibit equilibrium only if the relaxation length is small compared with a characteristic streamwise length scale of the flow.
Resumo:
We consider here the detailed application of a model Reynolds stress equation (Narasimha 1969) to plane turbulent wakes subjected to pressure gradients. The model, which is a transport equation for the stress exhibiting relaxation and diffusion, is found to be consistent with the observed response of a wake to a nearly impulsive pressure gradient (Narasimha & Prabhu 1971). It implies in particular that a wake can be in equilibrium only if the longitudinal strain rate is appreciably less than the wake shear. We then describe a further series of experiments, undertaken to investigate the range of validity of the model. It is found that, with an appropriate convergence correction when necessary, the model provides excellent predictions of wake development under favourable, adverse and mixed pressure gradients. Furthermore, the behaviour of constant-pressure distorted wakes, as reported by Keffer (1965, 1967), is also explained very well by the model when account is taken of the effective flow convergence produced by the distortion. In all these calculations, only a simple version of the model is used, involving two non-dimensional constants both of which have been estimated from a single relaxation experiment.
Resumo:
‘Best’ solutions for the shock-structure problem are obtained by solving the Boltzmann equation for a rigid sphere gas by applying minimum error criteria on the Mott-Smith ansatz. The use of two such criteria minimizing respectively the local and total errors, as well as independent computations of the remaining error, establish the high accuracy of the solutions, although it is shown that the Mott-Smith distribution is not an exact solution of the Boltzmann equation even at infinite Mach number. The minimum local error method is found to be particularly simple and efficient. Adopting the present solutions as the standard of comparison, it is found that the widely used v2x-moment solutions can be as much as a third in error, but that results based on Rosen's method provide good approximations. Finally, it is shown that if the Maxwell mean free path on the hot side of the shock is chosen as the scaling length, the value of the density-slope shock thickness is relatively insensitive to the intermolecular potential. A comparison is made on this basis of present results with experiment, and very satisfactory quantitative agreement is obtained.
Resumo:
This paper reports measurements of turbulent quantities in an axisymmetric wall jet subjected to an adverse pressure gradient in a conical diffuser, in such a way that a suitably defined pressure-gradient parameter is everywhere small. Self-similarity is observed in the mean velocity profile, as well as the profiles of many turbulent quantities at sufficiently large distances from the injection slot. Autocorrelation measurements indicate that, in the region of turbulent production, the time scale of ν fluctuations is very much smaller than the time scale of u fluctuations. Based on the data on these time scales, a possible model is proposed for the Reynolds stress. One-dimensional energy spectra are obtained for the u, v and w components at several points in the wall jet. It is found that self-similarity is exhibited by the one-dimensional wavenumber spectrum of $\overline{q^2}(=\overline{u^2}+\overline{v^2}+\overline{w^2})$, if the half-width of the wall jet and the local mean velocity are used for forming the non-dimensional wavenumber. Both the autocorrelation curves and the spectra indicate the existence of periodicity in the flow. The rate of dissipation of turbulent energy is estimated from the $\overline{q^2}$ spectra, using a slightly modified version of a previously suggested method.
Resumo:
Using a hot wire in a turbulent boundary layer in air, an experimental study has been made of the frequent periods of activity (to be called ‘bursts’) noticed in a turbulent signal that has been passed through a narrow band-pass filter. Although definitive identification of bursts presents difficulties, it is found that a reasonable characteristic value for the mean interval between such bursts is consistent, at the same Reynolds number, with the mean burst periods measured by Kline et al. (1967), using hydrogen-bubble techniques in water. However, data over the wider Reynolds number range covered here show that, even in the wall or inner layer, the mean burst period scales with outer rather than inner variables; and that the intervals are distributed according to the log normal law. It is suggested that these ‘bursts’ are to be identified with the ‘spottiness’ of Landau & Kolmogorov, and the high-frequency intermittency observed by Batchelor & Townsend. It is also concluded that the dynamics of the energy balance in a turbulent boundary layer can be understood only on the basis of a coupling between the inner and outer layers.