972 resultados para Flow cytometry. Immunophenotyping. Acute lymphoblastic leukemia
Resumo:
Toxicity of chemical pollutants in aquatic environments is often addressed by assays that inquire reproductive inhibition of test microorganisms, such as algae or bacteria. Those tests, however, assess growth of populations as a whole via macroscopic methods such as culture turbidity or colony-forming units. Here we use flow cytometry to interrogate the fate of individual cells in low-density populations of the bacterium Pseudomonas fluorescens SV3 exposed or not under oligotrophic conditions to a number of common pollutants, some of which derive from oil contamination. Cells were stained at regular time intervals during the exposure assay with fluorescent dyes that detect membrane injury (i.e., live-dead assay). Reduction of population growth rates was observed upon toxicant insult and depended on the type of toxicant. Modeling and cell staining indicate that population growth rate decrease is a combined effect of an increased number of injured cells that may or may not multiply, and live cells dividing at normal growth rates. The oligotrophic assay concept presented here could be a useful complement for existing biomarker assays in compliance with new regulations on chemical effect studies or, more specifically, for judging recovery after exposure to fluctuating toxicant conditions.
Resumo:
As acute nonlymphocytic leukemia (ANLL) with inv(16) (p13q22) or t(16;16)(p13;q22) has been shown to result from the fusion of transcription factor subunit core binding factor (CBFB) to a myosin heavy chain (MYH11), we sought to design methods to detect this rearrangement using reverse transcriptase-polymerase chain reaction (RT-PCR). In all of 27 inv(16)(p13q22) and four t(16;16)(p13;q22) cases tested, a chimeric CBFB-MYH11 transcript coding for an in-frame fusion protein was detected. In a more extensive RT-PCR analysis with different primer pairs, we detected a second new chimeric CBFB-MYH11 transcript in 10 of 11 patients tested. The CBFB-MYH11 reading frame of the second transcript was maintained in one patient but not in the others. We show that the different CBFB-MYH11 transcripts in one patient arise from alternative splicing. Translation of the transcript in which the CBFB-MYH11 reading frame is not maintained leads to a slightly truncated CBFB protein.
Resumo:
Pseudomonas fluorescens strain CHA0 is able to protect plants against a variety of pathogens, notably by producing the two antimicrobial compounds 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT). The regulation of the expression of these compounds is affected by many biotic factors, such as fungal pathogens, rhizosphere bacteria as well as plant species. Therefore, the influence of some plant phenolic compounds on the expression of DAPG and PLT biosynthetic genes has been tested using GFP-based reporter, monitored by standard fluometry and flow cytometry. In situ experiments were also performed with cucumber plants. We found that several plant metabolites such as IAA and umbelliferone are able to modify significantly the expression of DAPG and PLT. The use of flow cytometry with autofluorescents proteins seems to be a promising method to study rhizobacteria-plant interactions.
Resumo:
In patients with myelodysplastic syndrome (MDS) precursor cell cultures (colony-forming unit cells, CFU-C) can provide an insight into the growth potential of malignant myeloid cells. In a retrospective single-center study of 73 untreated MDS patients we assessed whether CFU-C growth patterns were of prognostic value in addition to established criteria. Abnormalities were classified as qualitative (i.e. leukemic cluster growth) or quantitative (i.e. strongly reduced/absent growth). Thirty-nine patients (53%) showed leukemic growth, 26 patients (36%) had strongly reduced/absent colony growth, and 12 patients showed both. In a univariate analysis the presence of leukemic growth was associated with strongly reduced survival (at 10 years 4 vs. 34%, p = 0.004), and a high incidence of transformation to AML (76 vs. 32%, p = 0.01). Multivariate analysis identified leukemic growth as a strong and independent predictor of early death (relative risk 2.12, p = 0.03) and transformation to AML (relative risk 2.63, p = 0.04). Quantitative abnormalities had no significant impact on the disease course. CFU-C assays have a significant predictive value in addition to established prognostic factors in MDS. Leukemic growth identifies a subpopulation of MDS patients with poor prognosis.
Resumo:
Genetically engineered bioreporters are an excellent complement to traditional methods of chemical analysis. The application of fluorescence flow cytometry to detection of bioreporter response enables rapid and efficient characterization of bacterial bioreporter population response on a single-cell basis. In the present study, intrapopulation response variability was used to obtain higher analytical sensitivity and precision. We have analyzed flow cytometric data for an arsenic-sensitive bacterial bioreporter using an artificial neural network-based adaptive clustering approach (a single-layer perceptron model). Results for this approach are far superior to other methods that we have applied to this fluorescent bioreporter (e.g., the arsenic detection limit is 0.01 microM, substantially lower than for other detection methods/algorithms). The approach is highly efficient computationally and can be implemented on a real-time basis, thus having potential for future development of high-throughput screening applications.
Resumo:
BACKGROUND The prevalence of and risk factors for central nervous system recurrence in patients with acute promyelocytic leukemia are not well established and remain a controversial matter. DESIGN AND METHODS Between 1996 and 2005, 739 patients with newly diagnosed acute promyelocytic leukemia enrolled in two consecutive trials (PETHEMA LPA96 and LPA99) received induction therapy with all-trans retinoic acid and idarubicin. Consolidation therapy comprised three courses of anthracycline monochemotherapy (LPA96), with all-trans retinoic acid and reinforced doses of idarubicin in patients with an intermediate or high risk of relapse (LPA99). Central nervous system prophylaxis was not given. RESULTS Central nervous system relapse was documented in 11 patients. The 5-year cumulative incidence of central nervous system relapse was 1.7% (LPA96 3.2% and LPA99 1.2%; p=0.09). The cumulative incidence was 0%, 0.8%, and 5.5% in low-, intermediate-, and high-risk patients, respectively. Relapse risk score (p=0.0001) and the occurrence of central nervous system hemorrhage during induction (5-year cumulative incidence 18.7%, p=0.006) were independent risk factors for central nervous system relapse. CONCLUSIONS This study shows a low incidence of central nervous system relapse in patients with acute promyelocytic leukemia following therapy with all-trans retinoic acid and anthracycline without specific central nervous system prophylaxis. Central nervous system relapse was significantly associated with high white blood cell counts and prior central nervous system hemorrhage, which emerged as independent prognostic factors.
Resumo:
Giardia duodenalis (syn. lamblia; syn. intestinalis) susceptibility testing is not routinely performed because the classical culture methods are very time-consuming and laborious. We developed a novel flow cytometry (FC) assay to evaluate the susceptibility of G. duodenalis trophozoites to metronidazole (MTZ). Different concentrations of MTZ were added to cultures of trophozoites (10 5 /mL) and the cultures were incubated for different periods. The 50% inhibitory concentration was calculated and propidium iodide (PI) was used to quantify the number of dead cells. After treatment, PI-positive trophozoites increased with increasing drug concentration and exposure time. An excellent correlation was found between FC and the classical method. A novel, accurate and reliable method is now available to evaluate G. duodenalis viability.
Resumo:
The inv(16) and related t(16;16) are found in 10% of all cases with de novo acute myeloid leukemia. In these rearrangements the core binding factor beta (CBFB) gene on 16q22 is fused to the smooth muscle myosin heavy chain gene (MYH11) on 16p13. To gain insight into the mechanisms causing the inv(16) we have analysed 24 genomic CBFB-MYH11 breakpoints. All breakpoints in CBFB are located in a 15-Kb intron. More than 50% of the sequenced 6.2 Kb of this intron consists of human repetitive elements. Twenty-one of the 24 breakpoints in MYH11 are located in a 370-bp intron. The remaining three breakpoints in MYH11 are located more upstream. The localization of three breakpoints adjacent to a V(D)J recombinase signal sequence in MYH11 suggests a V(D)J recombinase-mediated rearrangement in these cases. V(D)J recombinase-associated characteristics (small nucleotide deletions and insertions of random nucleotides) were detected in six other cases. CBFB and MYH11 duplications were detected in four of six cases tested.
Resumo:
Acute myeloid leukemia arising from chronic myelomonocytic leukemia is currently classified as acute myeloid leukemia with myelodysplasia-related changes, a high-risk subtype. However, the specific features of these cases have not been well described. We studied 38 patients with chronic myelomonocytic leukemia who progressed to acute myeloid leukemia. We compared the clinicopathologic and genetic features of these cases with 180 patients with de novo acute myeloid leukemia and 34 patients with acute myeloid leukemia following myelodysplastic syndromes. We also examined features associated with progression from chronic myelomonocytic leukemia to acute myeloid leukemia by comparing the progressed chronic myelomonocytic leukemia cases with a cohort of chronic myelomonocytic leukemia cases that did not transform to acute myeloid leukemia. Higher white blood cell count, marrow cellularity, karyotype risk score, and Revised International Prognostic Scoring System score were associated with more rapid progression from chronic myelomonocytic leukemia to acute myeloid leukemia. Patients with acute myeloid leukemia ex chronic myelomonocytic leukemia were older (P<0.01) and less likely to receive aggressive treatment (P=0.02) than de novo acute myeloid leukemia patients. Most cases showed monocytic differentiation and fell into the intermediate acute myeloid leukemia karyotype risk group; 55% had normal karyotype and 17% had NPM1 mutation. Median overall survival was 6 months, which was inferior to de novo acute myeloid leukemia (17 months, P=0.002) but similar to post myelodysplastic syndrome acute myeloid leukemia. On multivariate analysis of all acute myeloid leukemia patients, only age and karyotype were independent prognostic variables for overall survival. Our findings indicate that acute myeloid leukemia following chronic myelomonocytic leukemia displays aggressive behavior and support placement of these cases within the category of acute myeloid leukemia with myelodysplasia-related changes. The poor prognosis of these patients may be related to an older population and lack of favorable-prognosis karyotypes that characterize many de novo acute myeloid leukemia cases.
Resumo:
Acute myeloid leukemia (AML) is a heterogeneous disease whose prognosis is mainly related to the biological risk conferred by cytogenetics and molecular profiling. In elderly patients (60 years) with normal karyotype AML miR-3151 have been identified as a prognostic factor. However, miR-3151 prognostic value has not been examined in younger AML patients. In the present work, we have studied miR-3151 alone and in combination with BAALC, its host gene, in a cohort of 181 younger intermediate-risk AML (IR-AML) patients. Patients with higher expression of miR-3151 had shorter overall survival (P=0.0025), shorter leukemia-free survival (P=0.026) and higher cumulative incidence of relapse (P=0.082). Moreover, in the multivariate analysis miR-3151 emerged as independent prognostic marker in both the overall series and within the unfavorable molecular prognostic category. Interestingly, the combined determination of both miR-3151 and BAALC improved this prognostic stratification, with patients with low levels of both parameters showing a better outcome compared with those patients harboring increased levels of one or both markers (P=0.003). In addition, we studied the microRNA expression profile associated with miR-3151 identifying a six-microRNA signature. In conclusion, the analysis of miR-3151 and BAALC expression may well contribute to an improved prognostic stratification of younger patients with IR-AML.
Resumo:
Long non-coding RNAs (lncRNAs) are deregulated in several tumors, although their role in acute myeloid leukemia (AML) is mostly unknown.We have examined the expression of the lncRNA HOX antisense intergenic RNA myeloid 1 (HOTAIRM1) in 241 AML patients. We have correlated HOTAIRM1 expression with a miRNA expression profile. We have also analyzed the prognostic value of HOTAIRM1 expression in 215 intermediate-risk AML (IR-AML) patients.The lowest expression level was observed in acute promyelocytic leukemia (P < 0.001) and the highest in t(6;9) AML (P = 0.005). In 215 IR-AML patients, high HOTAIRM1 expression was independently associated with shorter overall survival (OR:2.04;P = 0.001), shorter leukemia-free survival (OR:2.56; P < 0.001) and a higher cumulative incidence of relapse (OR:1.67; P = 0.046). Moreover, HOTAIRM1 maintained its independent prognostic value within the favorable molecular subgroup (OR: 3.43; P = 0.009). Interestingly, HOTAIRM1 was overexpressed in NPM1-mutated AML (P < 0.001) and within this group retained its prognostic value (OR: 2.21; P = 0.01). Moreover, HOTAIRM1 expression was associated with a specific 33-microRNA signature that included miR-196b (P < 0.001). miR-196b is located in the HOX genomic region and has previously been reported to have an independent prognostic value in AML. miR-196b and HOTAIRM1 in combination as a prognostic factor can classify patients as high-, intermediate-, or low-risk (5-year OS: 24% vs 42% vs 70%; P = 0.004).Determination of HOTAIRM1 level at diagnosis provided relevant prognostic information in IR-AML and allowed refinement of risk stratification based on common molecular markers. The prognostic information provided by HOTAIRM1 was strengthened when combined with miR-196b expression. Furthermore, HOTAIRM1 correlated with a 33-miRNA signature.
Resumo:
Tetrasomy 8 constitutes a relatively rare recurring chromosome defect in myeloid disorders. The patient reported here, a 71-year-old man, presented with tetrasomy 8 as the sole chromosome abnormality associated with an acute nonlymphocytic leukemia of the M2 type. He failed to respond to chemotherapy and died one year after diagnosis. Following conventional cytogenetics and fluorescence in situ hybridization (FISH) with a centromeric probe specific for chromosome 8, tetrasomy 8 was detected in 61% of the metaphases analyzed and trisomy 8 in 39%. FISH analysis of interphase nuclei confirmed the existence of tetrasomic (35%) and trisomic cells (56%) and revealed a number of cells with two chromosomes 8 (8%). This normal population may represent lymphocytes or myeloid cells that escaped conventional analysis due to their inability to divide or to the small number of metaphases available. The relatively higher proportion of tetrasomic cells in metaphase compared with interphase may be attributed to a proliferative advantage of tetrasomic cells in vitro or to the longer duration of their cell cycle. The simultaneous presence of trisomic and tetrasomic cells confirms the hypothesis of a clonal relationship between trisomy 8 and tetrasomy 8. Our case brings further evidence to the specificity of tetrasomy 8 to myeloid disorders and to the association of this chromosome abnormality with a relatively poor prognosis. However, new patients must be studied to further delineate this cytogenetic entity.
Resumo:
BACKGROUND: The storage of blood induces the formation of erythrocytes-derived microparticles. Their pathogenic role in blood transfusion is not known so far, especially the risk to trigger alloantibody production in the recipient. This work aims to study the expression of clinically significant blood group antigens on the surface of red blood cells microparticles. MATERIAL AND METHODS: Red blood cells contained in erythrocyte concentrates were stained with specific antibodies directed against blood group antigens and routinely used in immunohematology practice. After inducing erythrocytes vesiculation with calcium ionophore, the presence of blood group antigens was analysed by flow cytometry. RESULTS: The expression of several blood group antigens from the RH, KEL, JK, FY, MNS, LE and LU systems was detected on erythrocyte microparticles. The presence of M (MNS1), N (MNS2) and s (MNS4) antigens could not be demonstrated by flow cytometry, despite that glycophorin A and B were identified on microparticles using anti-CD235a and anti-MNS3. DISCUSSION: We conclude that blood group antigens are localized on erythrocytes-derived microparticles and probably keep their immunogenicity because of their capacity to bind specific antibody. Selective segregation process during vesiculation or their ability to elicit an immune response in vivo has to be tested by further studies.
Resumo:
To measure the average length of telomere repeats at chromosome ends in individual cells we developed a flow cytometry method using fluorescence in situ hybridization (flow FISH) with labeled peptide nucleic acid (PNA) probes. Results of flow FISH measurements correlated with results of conventional telomere length measurements by Southern blot analysis (R = 0.9). Consistent differences in telomere length in CD8+ T-cell subsets were identified. Naive and memory CD4+ T lymphocytes in normal adults differed by around 2.5 kb in telomere length, in agreement with known replicative shortening of telomeres in lymphocytes in vivo. T-cell clones grown in vitro showed stabilization of telomere length after an initial decline and rare clones capable of growing beyond 100 population doublings showed variable telomere length. These results show that flow FISH can be used to measure specific nucleotide repeat sequences in single cells and indicate that the very large replicative potential of lymphocytes is only indirectly related to telomere length.