353 resultados para Flint
Resumo:
In 1915 the United States Geological Survey published a folio by Calkins and Emmons on the geology of the Philipsburg Quadrangle, which adjoins the area now under study to the west. Geology of this portion of Montana had not been mapped previously; consequently the purpose of this thesis is to make a geological reconnaissance of the stratigraphy and structure of the area.
Resumo:
In this issue...Len Waters, Circle K Club, Max Kert, Air Force, Stanley Eugene Bosch, Wesley Club, Engineer's week, toboggan party, Butte Central, Anaconda High School
Resumo:
Nerve injury is known to produce a variety of electrophysiological and morphological neuronal alterations (reviewed by Titmus and Faber, 1990; Bulloch and Ridgeway, 1989; Walters, 1994). Determining if these alterations are adaptive and how they are activated and maintained could provide important insight into basic cellular mechanisms of injury-induced plasticity. Furthermore, characterization of injury-induced plasticity provides a useful assay system for the identification of possible induction signals underlying these neuronal changes. Understanding fundamental mechanisms and underlying induction signals of injury-induced neuronal plasticity could facilitate development of treatment strategies for neural injury and neuropathic pain in humans.^ This dissertation characterizes long-lasting, injury-induced neuronal alterations using the nervous system of Aplysia californica as a model. These changes are examined at the behavioral, electrophysiological, and morphological levels. Injury-induced changes in the electrophysiological properties of neurons were found that increased the signaling effectiveness of the injured neurons. This increase in signalling effectiveness could act to compensate for partial destruction of the injured neuron's peripheral processes. Recovery of a defensive behavioral response which serves to protect the animal from further injury was found within 2 weeks of injury. For the behavioral recovery to occur, new neural pathways must have been formed between the denervated area and the CNS. This was found to be mediated at least in part by new axonal growth which extended from the injured cell back along the original pathway (i.e. into the injured nerve). In addition, injury produced central axonal sprouting into different nerves that do not usually contain the injured neuron's axons. This could be important for (i) finding alternative pathways to the periphery when the original pathways are impassable and (ii) the formation of additional synaptic connections with post-synaptic targets which would further enhance the signalling effectiveness of the injured cell. ^
Resumo:
Determining links between plant defence strategies is important to understand plant evolution and to optimize crop breeding strategies. Although several examples of synergies and trade-offs between defence traits are known for plants that are under attack by multiple organisms, few studies have attempted to measure correlations of defensive strategies using specific single attackers. Such links are hard to detect in natural populations because they are inherently confounded by the evolutionary history of different ecotypes. We therefore used a range of 20 maize inbred lines with considerable differences in resistance traits to determine if correlations exist between leaf and root resistance against pathogens and insects. Aboveground resistance against insects was positively correlated with the plant's capacity to produce volatiles in response to insect attack. Resistance to herbivores and resistance to a pathogen, on the other hand, were negatively correlated. Our results also give first insights into the intraspecific variability of root volatiles release in maize and its positive correlation with leaf volatile production. We show that the breeding history of the different genotypes (dent versus flint) has influenced several defensive parameters. Taken together, our study demonstrates the importance of genetically determined synergies and trade-offs for plant resistance against insects and pathogens.
Resumo:
Feeding patterns of mass herbivorous copepods in upwelling areas are investigated. Daily rations and aspects of their formation are examined in Calanoides carinatus (Benguela upwelling), Calanus pacificus (off the California coast), and Calanus australis (Peru upwelling). Rations were calculated based on gut plant pigment contents obtained at daily stations using laser spectrofluorometry, experimental data on the rate of gut evacuation and data on the carbon/chlorophyll ratio in phytoplankton and particulate matter at the respective stations. When phytoplankton was abundant, diel feeding rhythms were not pronounced and gut pigment level was high during the entire 24-h period. When phytoplankton biomass was low, distinct feeding rhythms were pronounced with a nocturnal maximum. During active upwelling intensive feeding on phytoplankton supports energy (respiration) and plastic (growth, development, reproduction, accumulation of reserves) metabolism of copepods. When upwelling was inactive, the surface part of the population feeds less actively and is able only partially to cover its energy expenditures. The actively growing and reproducing populations of C. pacificus and C. carinatus may consume close to 20% of primary production, whereas the inactive population of C. australis consumed only 0.2% of primary production when upwelling weakened.
Resumo:
Concentrations of Fe, Mg, Ca, Sr, Mn, Zn, and other heavy metals were analyzed by atomic absorption spectrometry in 27 chert samples from the Pacific deep sea, 17 chert samples from land, and 4 associated sediments from the Pacific Ocean. Among the elements, Fe and Mg concentrations are highly correlatable as are the relationships between Ca and Sr, or between Ca and CO2. The correlation between Fe and Mg is particularly high for Pacific deep-sea flints and cherts, and for cherts of deep-sea origin from outcrops on land. Enrichments in heavy metals were recognized in some deep-sea cherts; volcanogenic cherts are enriched in Fe, a chert nodule containing basaltic fragments is enriched in Zn and Cr, and biogenically enclosed carbonates in flint nodules are enriched in Mn. The correlation of Fe and Mg and their constant ratio [Mg(%)/Fe(%)] of around 0.33 might be characteristic features in the pelagic clays contained in deep-sea flints and cherts, and the concentrations of heavy metals in them would be controlled by the concentrations of Fe-Mg correlated clays. Although the mineralogical nature of the Fe-Mg clay in deep-sea cherts was not clarified by dissolution experiments on opaline minerals in chert, the high concentrations of Fe-montmorillonite and fine-grained olivine or other ferromagnesian silicate minerals in the clay may result in the high correlations between Fe and Mg.
Resumo:
Phytoplankton of a surface strongly desalinated water lens was investigated on the basis of materials collected during Cruise 57 of R/V Akademik Mstislav Keldysh in September 2007. The lens with salinity <18 psu had area of ca. 19000 sq. km and was located in the northwestern part of the Kara Sea near the eastern coast of Novaya Zemlya. It was a specific biotope that had been isolated from surrounding waters for more than three months. In the investigated area 66 algae species were identified. The maximal species diversity was found in the upper layers of the desalinated lens, where species number was 1.5 to 3 times higher than in other parts of the water column. Phytoplankton abundance in the upper layers of the lens was 1.5 to 4.5 times higher than in its lower part and generally higher than below the picnocline. Diatoms were the most abundant group in the upper layers of the lens, while flagellates dominated in the subpicnocline part of the water column. Maximal values of phytoplankton biomass were observed everywhere in the upper layers of the lens, where they were 1.2 to 3.7 times higher than in the lower part of the lens and 1.3 to 7.2 times higher than in the layer below the picnocline. Dinoflagellates generally gave the most contribution to total phytoplankton biomass. Phytoplankton of the desalinated surface lens in the northwestern part of the Kara Sea by its composition and quantitative parameters had the nearest resemblance to a phytocenosis that we observed two weeks later at a shallow desalinated shelf closely adjacent to the Ob estuary.
Resumo:
Based on results of field observations in August 1998, July 2000, and August 2001 composition and quantitative distribution of coccolithophorids in the middle part of the Eastern Bering Sea shelf between 56°052'N and 59°019'N was characterized. Emiliania huxleyi abundance, biomass, and population structure as well as role of species in the coccolithophorid community and phytoplankton as a whole were evaluated. Abundance of the species in the upper mixed layer in bloom areas was 1-3 mln cells/l and biomass made up 30-75 mg C/m**3. E. huxleyi share in total phytoplankton numbers and biomass at that reached 98% and 84% respectively. Significant spatial heterogeneity of E. huxleyi, quantitative distribution and population size structure, as well as asynchronism in population development in neighboring parts of the bloom area were shown. The time period, during which population structure in certain part of the area shifts from domination of juvenile cells without coccoliths to a phase of active detritus formation with dying coccolithophorid cells involved, may be estimated as two weeks. A conclusion is made that after anomalous E. huxleyi bloom in 1997 mass development of coccolithophorids became a characteristic feature of phytoplankton community's seasonal succession in the middle part of the Eastern Bering Sea shelf.
Resumo:
Population genetics of two species of mass copepods Undinula darwini and Calanus australis, with different range types, is investigated. Both species exhibit considerable genetic diversity, especially C. australis (observed heterozygoticity = 0.36), which inhabits a variable biotope in the zone of the Peru current. Samples of both species exhibited highly significant genetic heterogeneity as well as heterozygote deficiency compared with the situation expected from the Hardy-Weinberg law. Contribution of distance isolation to genetic differentiation of populations is estimated. Gene drift is discussed as a source of heterogeneity in populations of planktic copepods. Possible aspects of population genetic research on marine plank-tic crustaceans are discussed.