879 resultados para Flexural modulus
Resumo:
This work reports on the mechanical properties of germanium-rich amorphous carbon-germanium alloys prepared by RF sputtering of a germanium/graphite target under an argon/hydrogen atmosphere. Nano-hardness, elastic modulus and stress were investigated as a function of the carbon content. The stress, which is reduced by the incorporation of carbon, was related to the film structure and to the difference in the Ge-Ge and Ge-C bond length. Contrary to what was expected, the hardness and elastic modulus of the alloys are lower than the corresponding values for pure amorphous hydrogenated germanium film, which in turn has both properties also smaller than those of crystalline germanium. These properties are analyzed in terms of the structural properties of the films. (C) 2001 Elsevier B.V. B.V All rights reserved.
Resumo:
Objectives. The aim of this study was to evaluate the effect of mechanical cycling on the biaxial flexural strength of two densely sintered ceramic materials.Methods. Disc shaped zirconia (In-Ceram Zirconia) and high alumina (Procera AllCeram) ceramic specimens (diameter: 15 min and thickness: 1.2 mm) were fabricated according to the manufacturers' instructions. The specimens from each ceramic material (N = 40, n = 10/per group) were tested for flexural strength either with or without being subjected to mechanical cycling (20,000 cycles under 50 N load, immersion in distilled water at 37 degrees C) in a universal testing machine (1 mm/min). Data were statistically analyzed using two-way ANOVA and Tukey's test (alpha = 0.05).Results. High alumina ceramic specimens revealed significantly higher flexural strength values without and with mechanical cycling (647 +/- 48 and 630 +/- 143 MPa, respectively) than those of zirconia ceramic (497 +/- 35 and 458 +/- 53 MPa, respectively) (p < 0.05). Mechanical cycling for 20,000 times under 50 N decreased the flexural strength values for both high alumina andSignificance. High alumina ceramic revealed significantly higher mean flexural strength values than that of zirconia ceramic tested in this study either with or without mechanical cycling conditions. (C) 2005 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Influence of Wood Moisture Content on the Modulus of Elasticity in Compression Parallel to the Grain
Resumo:
Brazilian Standard ABNT NBR7190:1997 for timber structures design, adopts a first degree equation to describe the influence of wood moisture content. Periodically, when necessary, the referred standard is revised in order to analyze inconsistencies and to adopt considerations according new realities verified. So, the present paper aims to examine the adequacy of its equation which corrects to 12% of moisture the values of rigidity properties obtained on experimental tests. To quantify the moisture influence on modulus of elasticity, it was applied tests of compression parallel to the grain for six specimens of different strength classes, considering nominal moisture of 12; 20; 25; 30%. As results, modulus of elasticity in the moisture range 25-30% showed statistically equivalents, and was obtained a first degree equation to correlate the studied variables which leads to statically equivalent estimations when compared with results by ABNT NBR7190:1997 equation. However, it was indicated to maintain the current expression for the next text of the referred document review, without prejudice to statistical significance of the estimates.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Curauá fiber processing characterization has been performed throughout the different processing steps. Unsaturated polyester has been used as matrix in the production of curauá reinforced composite samples. Compression molding process has been used to prepare the samples. Tensile strength, impact resistance, flexural strength, Young's modulus and elongation at break have been accessed for curauá composites in comparison with fiberglass composites. Mechanical properties were found not to attend the company's internal standards specification. However, the work has shown some alternatives to solve these problems such as the modification of equipment characteristics and resin formulation, the necessity of incorporation of a higher content of fiber and the possibility of using a new type of filler. Copyright © 2000 Society of Automotive Engineers, Inc.
Resumo:
This study investigated the flexural strength of eight fiber posts (one carbon fiber, one carbon/quartz fiber, one opaque quartz fiber, two translucent quartz fiber, and three glass fiber posts). Eighty fiber posts were used and divided into eight groups (n = 10): G1: C-POST (Bisco); G2: ÆSTHETI-POST (Bisco); G3: ÆSTHETI-PLUS (Bisco); G4: LIGHT-POST (Bisco); G5: D.T. LIGHT-POST (Bisco); G6: PARAPOST WHITE (Coltene); G7: FIBERKOR (Pentron); G8: REFORPOST (Angelus). All of the samples were tested using the three-point bending test. The averages obtained were submitted to the ANOVA and to Tukey's test (p < 0.05). The mean values (MPa) of the groups ÆSTHETI-POST - carbon/ quartz fiber post (Bisco) and ÆSTHETI-PLUS - quartz fiber post (Bisco) were statistically similar and higher than the mean values of the other groups. The mean values of the groups C-POST - carbon fiber post (Bisco), LIGHT-POST - translucent quartz fiber post (Bisco), D.T. LIGHT-POST - double tapered translucent quartz fiber post (Bisco), PARAPOST WHITE - glass fiber post (Coltene) and FIBREKOR - glass fiber post (Pentron) were similar and higher than the group REFORPOST - glass fiber post (Angelus). Copyright © 2005 by the American Association of Endodontists.
Resumo:
Purpose: Fiber-reinforced composite (FRC) posts can be air-abraded to obtain good attachment to the resin cement. This study tested the effect of silica coating on the flexural strength of carbon, opaque, and translucent quartz FRC posts. Materials and Methods: Six experimental groups of FRC posts (n = 10 per group) were tested, either as received from the manufacturer or after chairside silica coating (30-μm CoJet-Sand). Results: There was no significant difference in the flexural strength of nonconditioned (504 to 525 MPa) and silica-coated (514 to 565 MPa) specimens (P > .05) (analysis of variance). The type of post did have a significant effect on flexural strength (P < .05). Conclusion: Chairside silica coating did not affect the flexural strength of both carbon and quartz FRC posts.
Resumo:
In the work described in the present paper, an analytical solution of the general heat conduction equation was employed to assay the temperature profile inside a solid slab which is initially at room temperature and is suddenly plunged into a fluid maintained at a high temperature. The results were then extrapolated to a simulation of a hot modulus of rupture test of typical MgO-graphite refractory samples containing different amounts of graphite in order to evaluate how fast the temperature equilibrates inside the test specimens. Calculations indicated that, depending on the graphite content, the time to full temperature homogenization was in the range of 80 to 200 s. These findings are relevant to the high temperature testing of such refractories in oxidizing conditions in view of the graphite oxidation risks in the proper evaluation of the hot mechanical properties.
Resumo:
This study evaluated the effect of water-bath and microwave post-polymerization treatments on the flexural strength and Vickers hardness of four autopolymerizing reline resins (Duraliner II-D, Kooliner-K, Tokuso Rebase Fast-TR and Ufi Gel Hard C-UGH) and one heat-polymerized acrylic resin (Lucitone 550-L), processed using two polymerization cycles (short cycle - 90 minutes at 73°C and 100°C for 30 minutes; and long cycle - 9 hours at 71°C). For each material, thirty specimens (64 x 10 x 3.3 mm) were made and divided into 3 groups (n=10). Specimens were tested after: processing (control group); water-bath at 55°C for 10 minutes (reline materials) or 60 minutes (L); and microwave irradiation. Flexural strength tests were performed at a crosshead speed of 5 mm/min using a three-point bending device with a span of 50 mm. The flexural strengths values were calculated in MPa. One fragment of each specimen was submitted to Vickers hardness test. Data were analyzed by 2-way ANOVA followed by Tukey's HSD test (α=0.05). L microwaved specimens (short cycle) exhibited significantly higher flexural strength means than its respective control group (p<0.05). Water-bath promoted a significant increase (p<0.05) in flexural strength of K and L (long cycle). The hardness of the tested materials was not influenced by the post-polymerization treatments. Post-polymerization treatments could be used to improve the flexural strength of some materials tested.