792 resultados para Fish, Richard
Resumo:
The current study presents a parasitological survey of larval nematodes from freshwater ornamental fish Iguanodectes spilurus caught in the watercourse of the Caete River, in the northeast region of the State of Para, Brazil. A total of 176 specimens, 1.36±0.75 g weight and 5.53±0.98 cm total length, were analyzed. Nematode larvae were identified as Capillaria sp., Procamallanus sp. and Anisakidae, with prevalence of 70.45% and infection intensity ranging from 1.81 to 4.70 larvae. The highest prevalence 57.38% occurred in the liver, but no seasonality was observed, indicating high infection throughout the year. Seasonality was observed in fish parasitized in the stomach, intestine and caecum, with prevalence and mean intensity of 17.61% and 2.32 parasites, 12.5% and 1.81 parasites, 10.79% and 2.21 parasites, respectively. The highest degree of infection was observed in the rainy season, probably due to increased availability of intermediate hosts or food.
Resumo:
Bacteriophage-host interaction studies in biofilm structures are still challenging due to the technical limitations of traditional methods. The aim of this study was to provide a direct fluorescence in situ hybridization (FISH) method based on locked nucleic acid (LNA) probes, which targets the phage replication phase, allowing the study of population dynamics during infection. Bacteriophages specific for two biofilm-forming bacteria, Pseudomonas aeruginosa and Acinetobacter, were selected. Four LNA probes were designed and optimized for phage-specific detection and for bacterial counterstaining. To validate the method, LNA-FISH counts were compared with the traditional plaque forming unit (PFU) technique. To visualize the progression of phage infection within a biofilm, colony-biofilms were formed and infected with bacteriophages. A good correlation (r=0.707) was observed between LNA-FISH and PFU techniques. In biofilm structures, LNA-FISH provided a good discrimination of the infected cells and also allowed the assessment of the spatial distribution of infected and non-infected populations.
Resumo:
prova tipográfica / uncorrected proof
Resumo:
Fluorescence in situ hybridization (FISH) is a molecular technique widely used for the detection and characterization of microbial populations. FISH is affected by a wide variety of abiotic and biotic variables and the way they interact with each other. This is translated into a wide variability of FISH procedures found in the literature. The aim of this work is to systematically study the effects of pH, dextran sulfate and probe concentration in the FISH protocol, using a general peptide nucleic acid (PNA) probe for the Eubacteria domain. For this, response surface methodology was used to optimize these 3 PNA-FISH parameters for Gram-negative (Escherichia coli and Pseudomonas fluorescens) and Gram-positive species (Listeria innocua, Staphylococcus epidermidis and Bacillus cereus). The obtained results show that a probe concentration higher than 300 nM is favorable for both groups. Interestingly, a clear distinction between the two groups regarding the optimal pH and dextran sulfate concentration was found: a high pH (approx. 10), combined with lower dextran sulfate concentration (approx. 2% [w/v]) for Gram-negative species and near-neutral pH (approx. 8), together with higher dextran sulfate concentrations (approx. 10% [w/v]) for Gram-positive species. This behavior seems to result from an interplay between pH and dextran sulfate and their ability to influence probe concentration and diffusion towards the rRNA target. This study shows that, for an optimum hybridization protocol, dextran sulfate and pH should be adjusted according to the target bacteria.
Resumo:
PLATES
Resumo:
v. 1
Resumo:
v. 2
Resumo:
En este proyecto propone aplicar técnicas de citogenética molecular analizando principalmente patrones de distribución de secuencias de ADN repetitivo, en especies sudamericanas de Cactaceae (Notocacteae, Trichocereeae, Hylocereae y Rhipsalideae) y Solanaceae (Cestroideae, Nicotianoideae, Petunioideae, Schizanthoideae, Schwenckioideae y Solanoideae). Las tres familias presentan importantes centros de diversificación en Sudamérica y un enorme interés desde el punto de vista económico, biológico y ecológico. Para lo cual serán utilizadas técnicas de coloración convencional y de hibridación in situ fluorescente (FISH) en especies de diferentes tribus y subfamilias. Estos estudios cariotípicos, en especial la distribución de secuencias de ADN repetitivo, permitirán explorar nuevos aspectos de la diferenciación cromosómica, aportando marcadores cromosómicos que podrían ser utilizados en estudios de evolución cariotípica y ser importantes para robustecer la comprensión de relaciones sistemáticas y filogenéticas. Los estudios citogenéticos en estas familias son esenciales para contribuir al conocimiento de su origen, diversificación y evolución, como así también para colaborar con el diseño de estrategias de mejoramiento genético de especies cultivadas y conservación de especies amenazadas.
Resumo:
v.3