904 resultados para Finite Element (FE)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Randomness in the source condition other than the heterogeneity in the system parameters can also be a major source of uncertainty in the concentration field. Hence, a more general form of the problem formulation is necessary to consider randomness in both source condition and system parameters. When the source varies with time, the unsteady problem, can be solved using the unit response function. In the case of random system parameters, the response function becomes a random function and depends on the randomness in the system parameters. In the present study, the source is modelled as a random discrete process with either a fixed interval or a random interval (the Poisson process). In this study, an attempt is made to assess the relative effects of various types of source uncertainties on the probabilistic behaviour of the concentration in a porous medium while the system parameters are also modelled as random fields. Analytical expressions of mean and covariance of concentration due to random discrete source are derived in terms of mean and covariance of unit response function. The probabilistic behaviour of the random response function is obtained by using a perturbation-based stochastic finite element method (SFEM), which performs well for mild heterogeneity. The proposed method is applied for analysing both the 1-D as well as the 3-D solute transport problems. The results obtained with SFEM are compared with the Monte Carlo simulation for 1-D problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rotating beam finite element in which the interpolating shape functions are obtained by satisfying the governing static homogenous differential equation of Euler–Bernoulli rotating beams is developed in this work. The shape functions turn out to be rational functions which also depend on rotation speed and element position along the beam and account for the centrifugal stiffening effect. These rational functions yield the Hermite cubic when rotation speed becomes zero. The new element is applied for static and dynamic analysis of rotating beams. In the static case, a cantilever beam having a tip load is considered, with a radially varying axial force. It is found that this new element gives a very good approximation of the tip deflection to the analytical series solution value, as compared to the classical finite element given by the Hermite cubic shape functions. In the dynamic analysis, the new element is applied for uniform, and tapered rotating beams with cantilever and hinged boundary conditions to determine the natural frequencies, and the results compare very well with the published results given in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results from parametric finite element analyses of geocell-supported embankments constructed on weak foundation soils. A composite model is used to numerically simulate the improvement in the strength and stiffness of the soil as a result of geocell confinement. The shear strength of the geocell-encased soil is obtained as a function of the additional confining pressure due to the geocell encasement considering it as a thin cylinder subjected to internal pressure. The stiffness of the geocell-encased soil is obtained from the stiffness of the unreinforced soil and the tensile modulus of the geocell material using an empirical equation. The validity of the model is verified by simulating the laboratory experiments on model geocell-supported embankments. Parametric finite element analyses of the geocell-supported embankments are carried out by varying the dimensions of the geocell layer, the tensile strength of the material used for fabricating the geocell layer, the properties of the infill soil, and the depth of the foundation layer. Some important guidelines for selecting the geocell reinforcement to support embankments on weak foundation soils are established through these numerical studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports a numerical method for modelling the elastic wave propagation in plates. The method is based on the partition of unity approach, in which the approximate spectral properties of the infinite dimensional system are embedded within the space of a conventional finite element method through a consistent technique of waveform enrichment. The technique is general, such that it can be applied to the Lagrangian family of finite elements with specific waveform enrichment schemes, depending on the dominant modes of wave propagation in the physical system. A four-noded element for the Reissner-indlin plate is derived in this paper, which is free of shear locking. Such a locking-free property is achieved by removing the transverse displacement degrees of freedom from the element nodal variables and by recovering the same through a line integral and a weak constraint in the frequency domain. As a result, the frequency-dependent stiffness matrix and the mass matrix are obtained, which capture the higher frequency response with even coarse meshes, accurately. The steps involved in the numerical implementation of such element are discussed in details. Numerical studies on the performance of the proposed element are reported by considering a number of cases, which show very good accuracy and low computational cost. Copyright (C)006 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Masonry strength is dependent upon characteristics of the masonry unit,the mortar and the bond between them. Empirical formulae as well as analytical and finite element (FE) models have been developed to predict structural behaviour of masonry. This paper is focused on developing a three dimensional non-linear FE model based on micro-modelling approach to predict masonry prism compressive strength and crack pattern. The proposed FE model uses multi-linear stress-strain relationships to model the non-linear behaviour of solid masonry unit and the mortar. Willam-Warnke's five parameter failure theory developed for modelling the tri-axial behaviour of concrete has been adopted to model the failure of masonry materials. The post failure regime has been modelled by applying orthotropic constitutive equations based on the smeared crack approach. Compressive strength of the masonry prism predicted by the proposed FE model has been compared with experimental values as well as the values predicted by other failure theories and Eurocode formula. The crack pattern predicted by the FE model shows vertical splitting cracks in the prism. The FE model predicts the ultimate failure compressive stress close to 85 of the mean experimental compressive strength value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymeric adhesive layers are employed for bonding two components in a wide variety of technological applications, It has been observed that, unlike in metals, the yield behavior of polymers is affected by the state of hydrostatic stress. In this work, the effect of pressure sensitivity of yielding and layer thickness on quasistatic interfacial crack growth in a ductile adhesive layer is investigated. To this end, finite deformation, finite element analyses of a cracked sandwiched layer are carried out under plane strain, small-scale yielding conditions for a wide range of mode mixities. The Drucker-Prager constitutive equations are employed to represent the behavior of the layer. Crack propagation is simulated through a cohesive zone model, in which the interface is assumed to follow a prescribed traction-separation law. The results show that for a given mode mixity, the steady state Fracture toughness [K](ss) is enhanced as the degree of pressure sensitivity increases. Further, for a given level of pressure sensitivity, [K](ss) increases steeply as mode Il loading is approached. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study reports the details of the finite element analysis of eleven shear critical partially prestressed concrete T-beams having steel fibers over partial or full depth. Prestressed concrete T-beams having a shear span to depth ratio of 2.65 and 1.59 and failing in the shear have been analyzed Using 'ANSYS'. The 'ANSYS' model accounts for the nonlinear phenomenon, such as, bond-slip of longitudinal reinforcements, post-cracking tensile stiffness of the concrete, stress transfer across the cracked blocks of the concrete and load sustenance through the bridging of steel fibers at crack interlace. The concrete is modeled using 'SOLID65'-eight-node brick element, which is capable Of simulating the cracking and crushing behavior of brittle materials. The reinforcements such as deformed bars, prestressing wires and steel fibers have been modeled discretely Using 'LINK8' - 3D spar element. The slip between the reinforcement (rebar, fibers) and the concrete has been modeled using a 'COMBIN39'-non-linear spring element connecting the nodes of the 'LINK8' element representing the reinforcement and nodes of the 'SOLID65' elements representing the concrete. The 'ANSYS' model correctly predicted the diagonal tension failure and shear compression failure of prestressed concrete beams observed in the experiment. I-lie capability of the model to capture the critical crack regions, loads and deflections for various types Of shear failures ill prestressed concrete beam has been illustrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, elastic wave propagation is studied in a nanocomposite reinforced with multiwall carbon nanotubes (CNTs). Analysis is performed on a representative volume element of square cross section. The frequency content of the exciting signal is at the terahertz level. Here, the composite is modeled as a higher order shear deformable beam using layerwise theory, to account for partial shear stress transfer between the CNTs and the matrix. The walls of the multiwall CNTs are considered to be connected throughout their length by distributed springs, whose stiffness is governed by the van der Waals force acting between the walls of nanotubes. The analyses in both the frequency and time domains are done using the wavelet-based spectral finite element method (WSFEM). The method uses the Daubechies wavelet basis approximation in time to reduce the governing PDE to a set of ODEs. These transformed ODEs are solved using a finite element (FE) technique by deriving an exact interpolating function in the transformed domain to obtain the exact dynamic stiffness matrix. Numerical analyses are performed to study the spectrum and dispersion relations for different matrix materials and also for different beam models. The effects of partial shear stress transfer between CNTs and matrix on the frequency response function (FRF) and the time response due to broadband impulse loading are investigated for different matrix materials. The simultaneous existence of four coupled propagating modes in a double-walled CNT-composite is also captured using modulated sinusoidal excitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report contains the details of the development of the stiffness matrix for a rectangular laminated anisotropic shallow thin shell finite element. The derivation is done under linear thin shell assumptions. Expressing the assumed displacement state over the middle surface of the shell as products of one-dimensional first-order Hermite interpolation polynomials, it is possible to insure that the displacement state for the assembled set of such elements, to be geometrically admissible. Monotonic convergence of the total potential energy is therefore possible as the modelling is successively refined. The element is systematically evaluated for its performance considering various examples for which analytical or other solutions are available

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new super convergent sandwich beam finite element formulation is presented in this article. This element is a two-nodded, six degrees of freedom (dof) per node (3 dof u(0), w, phi for top and bottom face sheets each), which assumes that all the axial and flexural loads are taken by face sheets, while the core takes only the shear loads. The beam element is formulated based on first-order shear deformation theory for the face sheets and the core displacements are assumed to vary linearly across the thickness. A number of numerical experiments involving static, free vibration, and wave propagation analysis examples are solved with an aim to show the super convergent property of the formulated element. The examples presented in this article consider both metallic and composite face sheets. The formulated element is verified in most cases with the results available in the published literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In some recent dropweight impact experiments [5] with pre-notched bend specimens of 4340 steel, it was observed that considerable crack tunneling occurred in the interior of the specimen prior to gross fracture initiation on the free surfaces. The final failure of the side ligaments happened because of shear lip formation. The tunneled region is characterized by a flat, fibrous fracture surface. In this paper, the experiments of [5] (corresponding to 5 m/s impact speed) are analyzed using a plane strain, dynamic finite element procedure. The Gurson constitutive model that accounts for the ductile failure mechanisms of micro-void nucleation, growth and coalescence is employed. The time at which incipient failure was observed near the notch tip in this computation, and the value of the dynamic J-integral, J d, at this time, compare reasonably well with experiments. This investigation shows that J-controlled stress and deformation fields are established near the notch tip whenever J d , increases with time. Also, it is found that the evolution of micro-mechanical quantities near the notch root can be correlated with the time variation of J d .The strain rate and the adiabatic temperature rise experienced at the notch root are examined. Finally, spatial variations of stresses and deformations are analyzed in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate, reliable and economical methods of determining stress distributions are important for fastener joints. In the past the contact stress problems in these mechanically fastened joints using interference or push or clearance fit pins were solved using both inverse and iterative techniques. Inverse techniques were found to be most efficient, but at times inadequate in the presence of asymmetries. Iterative techniques based on the finite element method of analysis have wider applications, but they have the major drawbacks of being expensive and time-consuming. In this paper an improved finite element technique for iteration is presented to overcome these drawbacks. The improved iterative technique employs a frontal solver for elimination of variables not requiring iteration, by creation of a dummy element. This automatically results in a large reduction in computer time and in the size of the problem to be handled during iteration. Numerical results are compared with those available in the literature. The method is used to study an eccentrically located pin in a quasi-isotropic laminated plate under uniform tension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resonant sound absorbers are used widely as anechoic coatings in underwater applications. In this paper a finite element scheme based on the Galerkin technique is used to analyze the reflection characteristics of the resonant absorber when insonified by a normal incidence plane wave. A waveguide theory coupled with an impedance matching condition in the fluid is used to model the problem. It is shown in this paper that the fluid medium encompassing the absorber can be modeled as an elastic medium with equivalent Lamé constants. Quarter symmetry conditions within the periodic unit cell are exploited. The finite element results are compared with analytical results, and with results published elsewhere in the literature. It is shown in the process that meshing of the fluid domain can be obviated if the transmission coefficients or reflection coefficients only are desired as is often the case. Finally, some design curves for thin resonant absorbers with water closure are presented in this paper.