966 resultados para Fine sandy soil
Resumo:
As estruturas de solo reforçado com geossintéticos são normalmente constituídas por solos granulares com boas propriedades físicas e mecânicas. O uso de apenas este tipo de solos pode proporcionar o aumento, por vezes insustentável, do custo da execução das estruturas e o aumento do seu impacto ambiental. Deste modo, as estruturas de solo reforçado perdem a sua vantagem competitiva em relação a outros tipos de estruturas (muros de betão, muros de gravidade, muros de gabiões, etc.). Para resolver este problema podem ser utilizados outros tipos de solos (solos locais, finos, com propriedades físicas e mecânicas piores mas, no entanto, mais baratos) para a execução deste tipo de estruturas. De forma geral, com este estudo pretendeu-se contribuir para o incremento do conhecimento sobre a utilização de solos finos para a construção de estruturas de solo reforçado (muros e taludes). Para tal avaliaram-se as diferenças no comportamento mecânico dos materiais compósitos (solo granular reforçado versus solo fino reforçado) e das estruturas de solo reforçado constituídas com os dois tipos de solos. Assim, os objetivos deste estudo foram avaliar: a influência de vários parâmetros nas propriedades mecânicas e na capacidade de carga dos solos reforçados com geossintéticos; a influência de vários parâmetros no dimensionamento das estruturas de solo reforçado; e o comportamento das estruturas dimensionadas (incluindo a estabilidade global e a influência do processo construtivo) recorrendo a uma ferramenta numérica (PLAXIS). Para cumprir os objetivos propostos foram realizadas análises experimentais em laboratório (análise do comportamento do solo reforçado através de ensaios triaxiais e de California Bearing Ratio) e análises numéricas (dimensionamento de estruturas de solo reforçado; modelação numérica do comportamento através de uma ferramenta numérica comercial com o método dos elementos finitos). Os resultados dos ensaios experimentais mostraram que o comportamento mecânico e a capacidade de carga do solo foram incrementados com a inclusão das camadas de geossintético. Este efeito variou com os diversos parâmetros analisados mas, de forma geral, foi mais importante no solo fino (solo com propriedades mecânicas piores). As análises numéricas mostraram que as estruturas de solo fino precisaram de maior densidade de reforços para serem estáveis. Além disso, as estruturas de solo fino foram mais deformáveis e o efeito do seu processo construtivo foi mais importante (principalmente para estruturas de solo fino saturado).
Resumo:
The key to better nutrient efficiency is to simultaneously improve uptake and decrease losses. This study sought to achieve this balance using sorbent additions and manure nutrients (spent poultry litter; SL) compared with results obtained using conventional sources (Conv; urea nitrogen, N; and phosphate–phosphorus; P). Two experiments were conducted. Firstly, a phosphorus pot trial involving two soils (sandy and clay) based on a factorial design (Digitaria eriantha/Pennisetum clandestinum). Subsequently, a factorial N and P field trial was conducted on the clay soil (D. eriantha/Lolium rigidum). In the pot trial, sorbent additions (26.2 g of hydrotalcite [HT] g P− 1) to the Conv treatment deferred P availability (both soils) as did SL in the sandy soil. In this soil, P delivery by the Conv treatments declined rapidly, and began to fall behind the HT and SL treatments. Addition of HT increased post-trial Colwell P. In the field trial low HT-rates (3.75 and 7.5 g of HT g P− 1) plus bentonite, allowed dry matter production and nutrient uptake to match that of Conv treatments, and increased residual mineral-N. The SL treatments performed similarly to (or better than) Conv treatments regarding nutrient uptake. With successive application, HT forms may provide better supply profiles than Conv treatments. Our findings, combined with previous studies, suggest it is possible to use manures and ion-exchangers to match conventional N and P source productivity with lower risk of nutrient losses.
Resumo:
Organic farming does not allow using certain inputs, such as N, which differ in nutrient release rates and dynamics. To evaluate the effect of different organic fertilizers on the vegetative, nutritional, and productive parameters of blueberries ( Vaccinium corymbosum L.), a pot experiment was conducted in three consecutive seasons in a sandy soil of south-central Chile using ‘Corona’, ‘Legacy’ and ‘Liberty’. The following fertilizers were evaluated: compost (CM), Purely Grow (PG), Purely Lysine (PL), Fertil (F), blood meal (BM), lupine meal (LM), along with a control treatment without fertilization (C) and two conventional treatments with urea (CF) and sodium nitrate (S). Results indicate that vegetative growth and leaf N concentration prior to senescence were different among cultivars in the three evaluated seasons. The highest leaf N concentration was recorded in ‘Corona’ followed by ‘Legacy’ and ‘Liberty’ while levels tended to increase in the seasons. Quick-release N sources had greater effects on these parameters but with differences among cultivars. Fruit yield and weight were higher in ‘Corona’ followed by ‘Legacy’ and ‘Liberty’. Fruit yield was generally higher when using LM and F and showed no effect on fruit weight. Leaf chlorophyll content was higher in ‘Corona’ followed by ‘Legacy’ and ‘Liberty’, which increased when using CF, LM, BM, and PG. Finally, the organic fertilizer and blueberry cultivar that obtained the highest values for most of the evaluated parameters were LM and Corona, respectively.
Resumo:
Laboratory incubation experiments were carried out to estimate the mineralisation of metalaxyl 14C {N-(2-6 dimethyphenyl)-N-(methoxyacetyl) alanine methyl ester} in four Brazilian soils with different physico-chemical properties, at 3 and 30 ?g a.i. g-1. In the Petrolina sandy soil the mineralisation presented higher 14CO2 production rates, at two essayed concentrations, after 70 days. Microbiological studies were done to determine the numbers of bacteria, actinobacteria and fungi (CFU g-1 soil). In relation with other microbial community, bacterial population demonstrated to be a major component of the cultivable heterotrophic community after the application.of the compound. No detectable metabolites were found in this study. The results suggest that soil properties and application history may have a strong influence on the fungicide behavior in these soil samples.
Resumo:
The unsaturated soil mechanics is receiving increasing attention from researchers and as well as from practicing engineers. However, the requirement of sophisticated devices to measure unsaturated soil properties and time consumption have made the geotechnical engineers keep away from implication of the unsaturated soil mechanics for solving practical geotechnical problems. The application of the conventional laboratory devices with some modifications to measure unsaturated soil properties can promote the application of unsaturated soil mechanics into engineering practice. Therefore, in the present study, a conventional direct shear device was modified to measure unsaturated shear strength parameters at low suction. Specially, for the analysis of rain-induced slope failures, it is important to measure unsaturated shear strength parameters at low suction where slopes become unstable. The modified device was used to measure unsaturated shear strength of two silty soils at low suction values (0 ~ 50 kPa) that were achieved by following drying path and wetting path of soil-water characteristic curves (SWCCs) of soils. The results revealed that the internal friction angle of soil was not significantly affected by the suction and as well as the drying-wetting SWCCs of soils. The apparent cohesion of soil increased with a decreasing rate as the suction increased. Further, the apparent cohesion obtained from soil in wetting was greater than that obtained from soil in drying. Shear stress-shear displacement curves obtained from soil specimens subjected to the same net normal stress and different suction values showed a higher initial stiffness and a greater peak stress as the suction increased. In addition, it was observed that soil became more dilative with the increase of suction. A soil in wetting exhibited slightly higher peak shear stress and more contractive volume change behaviour than that of in drying at the same net normal stress and the suction.
Effects of human impacts on fine roots and soil organic matter of a pine forest in subtropical China
Resumo:
Offshore and onshore buried pipelines under high operating temperature and pressures may lead to upheaval buckling (UHB) if sufficient soil cover is not present to prevent the upward movement of the pipeline. In regions where seasonal changes involve ground soil undergoing freezing-thawing cycles, the uplift resistance from soil cover may be minimum when the soil is undergoing thawing. This paper presents the results from 2 directly-comparable minidrum centrifuge tests conducted at the Schofield Centre, University of Cambridge, to investigate the difference in uplift resistance responses between fully-saturated and thawed sandy backfill conditions. Both tests were conducted drained at 30g using an 8.6 mm diameter aluminium model pipe, corresponding to a prototype pipe diameter of 258 mm. The soil cover/pipe diameter ratio, H/D, was kept at 1. Fraction E fine silica sand was used as the backfill. Preliminary experimental results indicated that the ultimate uplift resistance of a thawing sand backfill to be lower than that of a fully saturated sand backfill. This suggests that in regions where backfill soil undergoes freeze-thaw cycles, the thawing backfill may be more critical than fully saturated backfill for uplift resistance. The 2-dimensional displacement field during the experiment was accurately measured and analysed using the Particle Image Velocimetry technique. Copyright © 2011 by the International Society of Offshore and Polar Engineers (ISOPE).
Resumo:
Extracellular polymeric substances (EPS) from four filamentous cyanobacteria Microcoleus vaginatus, Scytonema javanicum, Phormidium tenue and Nostoc sp. and a coccoid single-cell green alga Desmococcus olivaceus that had been separated from desert algal crusts of Tegger desert of China, were investigated for their chemical composition, structure,and physical properties. The EPS contained 7.5-50.3% protein (in polymers ranging from 14 to more than 200 kD, SDS-PAGE) and 16.2-46.5% carbohydrate (110-460 kD, GFC). 6-12 kinds of monosaccharides, including 2-O-methyl rhamnose, 2-O-methyl glucose, and N-acetyl glucosamine were found. The main carbohydrate chains from M. vaginatus and S. javanicum consisted mainly of equal proportion of Man, Gal and Glc, that from P. tenue consisted mainly of arabinose, glucose and rhamnose. Arabinose was present in pyranose form, mainly alpha-L 1 --> 3 linked, with branches on C4 of almost half of the units. Glucose was responsible for the terminal units, in addition of having some units as beta1 --> 3 and some as beta1 --> 4 linked. Rhamnose was mainly 1 --> 3 linked with branches on C2 on half of the units. The carbohydrate polymer from D. olivaceus was composed mainly of beta1 --> 4 linked xylose, galactose and glucose. The galactose part was present both in beta-pyranose and -furanose forms. Arabinose in alpha-L-furanose form was mainly present as 1 --> 2 and 1 --> 2, 5 linked units, rhamnose only as alpha 1 --> 3 and xylose as beta 1 --> 4. The backbone of the polysaccharide from Nostoc sp. was composed of beta-1 --> 4 linked xylose, galactose and glucose. Most of the glucose was branched on position C6, terminal glucose and 2-O-methyl glucose units are also present. The relationship between structure, physical properties and potential biological function is discussed. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Four filamentous cyanobacteria, Microcoleus vaginatus, Phormidium tenue, Scytonema javanicum (Kutz.) and Nostoc sp., and a single-celled green alga, Desmococcus olivaceus, all isolated from Shapotou (Ningxia Hui Autonomous Region of China), were batch cultured and inoculated onto unconsolidated sand in greenhouse and field experiments. Their ability to reduce wind erosion in sands was quantified by using a wind tunnel laboratory. The major factors related to cohesion of algal crusts, such as biomass, species, species combinations, bioactivity, niche, growth phase of algae, moisture, thickness of the crusts, dust accretion (including dust content and manner of dust added) and other cryptogams (lichens, fungi and mosses) were studied. The best of the five species were M. vaginatus and P. tenue, while the best mix was a blend of 80% M. vaginatus and 5% each of P. tenue, S. javanicum, Nostoc sp. and D. olivaceus. The threshold friction velocity was significantly increased by the presence of all of the cyanobacterial species, while the threshold impact velocity was notably increased only by the filamentous species. Thick crusts were less easily eroded than thin crusts, while biomass was more effective than thickness. Dust was incorporated best into Microcoleus crust when added in small amounts over time, and appeared to increase growth of the cyanobacterium as well as strengthen the cohesion of the crust. Microbial crust cohesion was mainly attributed to algal aggregation, while lichens, fungi and mosses affected more the soil structure and physico-chemical properties.
Resumo:
A field experiment with millet (Pennisetum glaucum L.), sorghum [Sorghum bicolor (L.) Moench], cowpea (Vigna unguiculata L.) and groundnut (Arachnis hypogeae L.) was conducted on severely P-deficient acid sandy soils of Niger, Mali and Burkina Faso to measure changes in pH and nutrient availability as affected by distance from the root surface and by mineral fertiliser application. Treatments included three rates of phosphorus (P) and four levels of nitrogen (N) application. Bulk, rhizosphere and rhizoplane soils were sampled at 35, 45 and 75 DAS in 1997 and at 55 and 65 DAS in 1998. Regardless of the cropping system and level of mineral fertiliser applied, soil pH consistently increased between 0.7 and two units from the bulk soil to the rhizoplane of millet. Similar pH gradients were observed in cowpea, but pH changes were much smaller in sorghum with a difference of only 0.3 units. Shifts in pH led to large increases in nutrient availability close to the roots. Compared with the bulk soil, available P in the rhizoplane was between 190 and 270% higher for P-Bray and between 360 and 600% higher for P-water. Exchangeable calcium (Ca) and magnesium (Mg) levels were also higher in the millet rhizoplane than in the bulk soil, whereas exchangeable aluminium (Al) levels decreased with increasing pH close to the root surface. The results suggest an important role of root-induced pH increases for crops to cope with acidity-induced nutrient deficiency and Al stress of soils in the Sudano-Sahelian zone of West Africa.
Resumo:
A field monitoring study was carried out to follow the changes of fine root morphology, biomass and nutrient status in relation to seasonal changes in soil solution chemistry and moisture regime in a mature Scots pine stand on acid soil. Seasonal and yearly fluctuations in soil moisture and soil solution chemistry have been observed. Changes in soil moisture accounted for some of the changes in the soil solution chemistry. The results showed that when natural acidification in the soil occurs with low pH (3.5-4.2) and high aluminium concentration in the soil solution (> 3-10 mg l(-1)), fine root longevity and distribution could be affected. However, fine root growth of Scots pine may not be negatively influenced by adverse soil chemical conditions if soil moisture is not a limiting factor for root growth. In contrast, dry soil conditions increase Scots pine susceptibility to soil acidification and this could significantly reduce fine root growth and increase root mortality. It is therefore important to study seasonal fluctuations of the environmental variables when investigating and modelling cause-effect relationships.