918 resultados para Fine Specificity
Resumo:
BACKGROUND: In numerous high-risk medical and surgical conditions, a greater volume of patients undergoing treatment in a given setting or facility is associated with better survival. For patients with pulmonary embolism, the relation between the number of patients treated in a hospital (volume) and patient outcome is unknown. METHODS: We studied discharge records from 186 acute care hospitals in Pennsylvania for a total of 15 531 patients for whom the primary diagnosis was pulmonary embolism. The study outcomes were all-cause mortality in hospital and within 30 days after presentation for pulmonary embolism and the length of hospital stay. We used logistic models to study the association between hospital volume and 30-day mortality and discrete survival models to study the association between in-hospital mortality and time to hospital discharge. RESULTS: The median annual hospital volume for pulmonary embolism was 20 patients (interquartile range 10-42). Overall in-hospital mortality was 6.0%, whereas 30-day mortality was 9.3%. In multivariable analysis, very-high-volume hospitals (> or = 42 cases per year) had a significantly lower odds of in-hospital death (odds ratio [OR] 0.71, 95% confidence interval [CI] 0.51-0.99) and of 30-day death (OR 0.71, 95% CI 0.54-0.92) than very-low-volume hospitals (< 10 cases per year). Although patients in the very-high-volume hospitals had a slightly longer length of stay than those in the very-low-volume hospitals (mean difference 0.7 days), there was no association between volume and length of stay. INTERPRETATION: In hospitals with a high volume of cases, pulmonary embolism was associated with lower short-term mortality. Further research is required to determine the causes of the relation between volume and outcome for patients with pulmonary embolism.
Resumo:
Angiostrongylus cantonensis and Gnathostoma spinigerum are the two most common causative parasites of eosinophilic meningitis (EOM). Serological tests are helpful tools for confirming the identity of the pathogen. Recent reports determined the specificity of such tests by using normal healthy controls. There have been limited studies done to rule out the cross-reactivity between these two causative parasites of EOM. This study aims to assess the specificity of the serological test in EOM by using each condition as a control for the other. Thirty-three patients with a diagnosis of EOM were enrolled. Sera from 22 patients with a positive 29-kDa antigenic diagnostic band of A. cantonensis were tested for the 21 and 24-kDa antigenic bands of G. spinigerum. Similarly, sera of 11 gnathostomiasis patients were tested for the 29-kDa diagnostic band for A. cantonensis. Only one patient in the angiostrongyliasis group had a positive result for the 21 and 24-kDa antigenic bands of G. spinigerum, while no gnathostomiasis patients showed a positive result for the 29-kDa antigenic band of A. cantonensis. The specificity of the 21 and 24-kDa antigenic bands for gnathostomiasis and the 29-kDa antigenic band for A. cantonensis was 95.5% and 100%, respectively. The antigenic bands for the diagnosis of gnathostomiasis and angiostrongyliasis in EOM were highly specific.
Resumo:
Collection : Theologiae cursus completus ; 21
Resumo:
Many disorders are associated with altered serum protein concentrations, including malnutrition, cancer, and cardiovascular, kidney, and inflammatory diseases. Although these protein concentrations are highly heritable, relatively little is known about their underlying genetic determinants. Through transethnic meta-analysis of European-ancestry and Japanese genome-wide association studies, we identified six loci at genome-wide significance (p < 5 × 10(-8)) for serum albumin (HPN-SCN1B, GCKR-FNDC4, SERPINF2-WDR81, TNFRSF11A-ZCCHC2, FRMD5-WDR76, and RPS11-FCGRT, in up to 53,190 European-ancestry and 9,380 Japanese individuals) and three loci for total protein (TNFRS13B, 6q21.3, and ELL2, in up to 25,539 European-ancestry and 10,168 Japanese individuals). We observed little evidence of heterogeneity in allelic effects at these loci between groups of European and Japanese ancestry but obtained substantial improvements in the resolution of fine mapping of potential causal variants by leveraging transethnic differences in the distribution of linkage disequilibrium. We demonstrated a functional role for the most strongly associated serum albumin locus, HPN, for which Hpn knockout mice manifest low plasma albumin concentrations. Other loci associated with serum albumin harbor genes related to ribosome function, protein translation, and proteasomal degradation, whereas those associated with serum total protein include genes related to immune function. Our results highlight the advantages of transethnic meta-analysis for the discovery and fine mapping of complex trait loci and have provided initial insights into the underlying genetic architecture of serum protein concentrations and their association with human disease.
Resumo:
Inhibitory receptors mediate CD8 T-cell hyporesponsiveness against cancer and infectious diseases. PD-1 and CTLA-4 have been extensively studied, and blocking antibodies have already shown clinical benefit for cancer patients. Only little is known on extended co-expression of inhibitory receptors and their ligands. Here we analyzed the expression of eight inhibitory receptors by tumor-antigen specific CD8 T-cells. We found that the majority of effector T-cells simultaneously expressed four or more of the inhibitory receptors BTLA, TIM-3, LAG-3, KRLG-1, 2B4, CD160, PD-1 and CTLA-4. There were major differences depending on antigen-specificity, differentiation and anatomical localization of T-cells. On the other hand, naive T-cells were only single or double positive for BTLA and TIM-3. Extended co-expression is likely relevant for effector T-cells, as we found expression of multiple ligands in metastatic lesions of melanoma patients. Together, our data suggest that naive T-cells are primarily regulated by BTLA and TIM-3, whereas effector cells interact via larger numbers of inhibitory receptors. Blocking multiple inhibitory receptors simultaneously or sequentially may improve T-cell based therapies, but further studies are necessary to clarify the role of each receptor-ligand pair.
Resumo:
Human glandular kallikrein 2 (hK2) is a trypsin-like serine protease expressed predominantly in the prostate epithelium. Recently, hK2 has proven to be a useful marker that can be used in combination with prostate specific antigen for screening and diagnosis of prostate cancer. The cleavage by hK2 of certain substrates in the proteolytic cascade suggest that the kallikrein may be involved in prostate cancer development; however, there has been very little other progress toward its biochemical characterization or elucidation of its true physiological role. In the present work, we adapt phage substrate technology to study the substrate specificity of hK2. A phage-displayed random pentapeptide library with exhaustive diversity was generated and then screened with purified hK2. Phages displaying peptides susceptible to hK2 cleavage were amplified in eight rounds of selection and genes encoding substrates were transferred from the phage to a fluorescent system using cyan fluorescent protein (derived from green fluorescent protein) that enables rapid determination of specificity constants. This study shows that hK2 has a strict preference for Arg in the P1 position, which is further enhanced by a Ser in P'1 position. The scissile bonds identified by phage display substrate selection correspond to those of the natural biological substrates of hK2, which include protein C inhibitor, semenogelins, and fibronectin. Moreover, three new putative hK2 protein substrates, shown elsewhere to be involved in the biology of the cancer, have been identified thus reinforcing the importance of hK2 in prostate cancer development.
Resumo:
The aim of this study was to evaluate the specificity of a rapid immunochromatographic test that was developed to detect antibodies against the rK39 antigen for the diagnosis of visceral leishmaniasis (VL). This evaluation was performed using sera from patients with a confirmed diagnosis of active cutaneous leishmaniasis. The sera from 272 patients with a confirmed diagnosis of localised cutaneous leishmaniasis (CL) who resided in an area endemic for Leishmania braziliensis in Brazil were obtained before the initiation of antileishmanial treatment. Kalazar Detect(r)(InBios, Seattle, WA) recombinant K39 antigen-based immunochromatographic strips were used according to the manufacturer's instructions. The test results were evaluated independently by two examiners in sequential order. The positive controls for the test included five serum samples from five patients with parasitologically confirmed diagnosis of VL caused by Leishmania infantum in Brazil. Overall, 100% of the samples obtained from patients with CL were negative, confirming the absence of a serological cross-reaction for individuals with cutaneous disease when these patients were evaluated using the rapid test. The lack of a cross-reaction in patients who were infected by parasites of the same genus highlights the specificity of the rK39 antigen for the diagnosis of VL in areas with the sympatric circulation of L. braziliensis and L. infantum.
Resumo:
CD6 has recently been identified and validated as risk gene for multiple sclerosis (MS), based on the association of a single nucleotide polymorphism (SNP), rs17824933, located in intron 1. CD6 is a cell surface scavenger receptor involved in T-cell activation and proliferation, as well as in thymocyte differentiation. In this study, we performed a haptag SNP screen of the CD6 gene locus using a total of thirteen tagging SNPs, of which three were non-synonymous SNPs, and replicated the recently reported GWAS SNP rs650258 in a Spanish-Basque collection of 814 controls and 823 cases. Validation of the six most strongly associated SNPs was performed in an independent collection of 2265 MS patients and 2600 healthy controls. We identified association of haplotypes composed of two non-synonymous SNPs [rs11230563 (R225W) and rs2074225 (A257V)] in the 2(nd) SRCR domain with susceptibility to MS (P max(T) permutation = 1×10(-4)). The effect of these haplotypes on CD6 surface expression and cytokine secretion was also tested. The analysis showed significantly different CD6 expression patterns in the distinct cell subsets, i.e. - CD4(+) naïve cells, P = 0.0001; CD8(+) naïve cells, P<0.0001; CD4(+) and CD8(+) central memory cells, P = 0.01 and 0.05, respectively; and natural killer T (NKT) cells, P = 0.02; with the protective haplotype (RA) showing higher expression of CD6. However, no significant changes were observed in natural killer (NK) cells, effector memory and terminally differentiated effector memory T cells. Our findings reveal that this new MS-associated CD6 risk haplotype significantly modifies expression of CD6 on CD4(+) and CD8(+) T cells.
Resumo:
Abstract Peroxisome Proliferator-Activated Receptors (PPARs) form a family of three nuclear receptors regulating important cellular and metabolic functions. PPARs control gene expression by directly binding to target promoters as heterodimers with the Retinoid X Receptor (RXR), and their transcriptional activity is enhanced upon activation by natural or pharmacological ligands. The binding of PPAR/RXR heterodimers on target promoters allows the anchoring of a series of coactivators and corepressors involved in promoter remodeling and the recruitment of the transcription machinery. The transcriptional output finally depends on a complex interplay between (i) the respective expression levels of PPARs, RXRs and of other nuclear receptors competing for DNA binding and RXR recruitment, (ii) the availability and the nature of PPAR and RXR ligands, (iii) the expression levels and the nature of the different coactivators and corepressors and (iv) the sequence and the epigenetic status of the promoter. Understanding how all these factors and signals integrate and fine-tune transcription remains a challenge but is necessary to understand the specificity of the physiological functions regulated by PPARs. The work presented herein focuses on the molecular mechanisms of PPAR action and aims at understanding how the interactions and mobility of the receptor modulate transcription in the physiological context of a living cell: Such observations in vivo rely on the use of engineered fluorescent protein chimeras and require the development and the application of complementary imaging techniques such as Fluorescence Recovery After Photobleaching (FRAP), Fluorescence Resonance Energy Transfer (FRET) and Fluorescence Correlation Spectroscopy (FCS). Using such techniques, PPARs are shown to reside solely in the nucleus where they are constitutively associated with RXR but transcriptional activation by ligand binding -does not promote the formation of sub-nuclear structures as observed with other nuclear receptors. In addition, the engagement of unliganded PPARs in large complexes of cofactors in living cells provides a molecular basis for their ligand-independent activity. Ligand binding reduces receptor diffusion by promoting the recruitment of coactivators which further enlarge the size of PPAR complexes to acquire full transcriptional competence. Using these molecular approaches, we deciphered the molecular mechanisms through which phthalates, a class of pollutants from the plastic industry, interfere with PPARγ signaling. Mono-ethyl-hexyl-phthalate (MEHP) binding induces the recruitment of a specific subset of cofactors and translates into the expression of a specific subset of target genes, the transcriptional output being strongly conditioned by the differentiation status of the cell. This selective PPARγ modulation induces limited adipogenic effects in cellular models while exposure to phthalates in animal models leads to protective effects on glucose tolerance and diet-induced obesity. These results demonstrate that phthalates influence lipid and carbohydrate metabolism through complex mechanisms which most likely involve PPARγ but also probably PPARα and PPARß, Altogether, the molecular and physiological demonstration of the interference of pollutants with PPAR action outlines an important role of chemical exposure in metabolic regulations. Résumé Les PPARs (Peroxisome Proliferator-Activated Receptors) forment une famille de récepteurs nucléaires qui régulent des fonctions cellulaires et métaboliques importantes. Les PPARs contrôlent l'expression des gènes en se liant directement à leurs promoteurs sous forme d'hétérodimères avec les récepteurs RXR (Retinoid X Receptor), et leur activité transcriptionnelle est stimulée par la liaison de ligands naturels ou pharmacologiques. L'association des hétérodimères PPAR/RXR avec les promoteurs des gènes cibles permet le recrutement de coactivateurs et de corépresseurs qui vont permettre le remodelage de la chromatine et le recrutement de la machinerie transcriptionnelle. Les actions transcriptionnelles du récepteur dépendent toutefois d'interactions complexes qui sont régulées par (i) le niveau d'expression des PPARs, des RXRs et d'autres récepteurs nucléaires entrant en compétition pour la liaison à l'ADN et l'association avec RXR, (ii) la disponibilité et la nature de ligands de PPAR et de RXR, (iii) les niveaux d'expression et la nature des différents coactivateurs et corépresseurs et (iv) la séquence et le marquage épigénétique des promoteurs. La compréhension des mécanismes qui permettent d'intégrer ces aspects pour assurer une régulation fine de l'activité transcriptionnelle est un défi qu'il est nécessaire de relever pour comprendre la spécificité des fonctions physiologiques régulées par les PPARs. Ce travail concerne l'étude des mécanismes d'action moléculaire des PPARs et vise à mieux comprendre comment les interactions du récepteur avec d'autres protéines ainsi que la mobilité de ce dernier régulent son activité transcriptionnelle dans le contexte physiologique des cellules vivantes. De telles observations reposent sur l'emploi de protéines fusionnées à des protéines fluorescentes ainsi que sur le développement et l'utilisation de techniques d'imagerie complémentaires telles que le FRAP (Fluorescence Recovery After Photobleaching), le FRET (Fluorescence Resonance Energy Transfer) ou la FCS (Fluorescence Corrélation Spectroscopy). En appliquant ces méthodes, nous avons pu montrer que les PPARs résident toujours dans le noyau où ils sont associés de manière constitutive à RXR, mais que l'ajout de ligand n'induit pas la formation de structures sub-nucléaires comme cela a pu être décrit pour d'autres récepteurs nucléaires. De plus, les PPARs sont engagés dans de larges complexes protéiques de cofacteurs en absence de ligand, ce qui procure une explication moléculaire à leur activité ligand-indépendante. La liaison du ligand réduit la vitesse de diffusion du récepteur en induisant le recrutement de coactivateurs qui augmente encore plus la taille des complexes afin d'acquérir un potentiel d'activation maximal. En utilisant ces approches moléculaires, nous avons pu caractériser les mécanismes permettant aux phtalates, une classe de polluants provenant de l'industrie plastique, d'interférer avec PPARγ. La liaison du mono-ethyl-hexyl-phtalate (NERF) à PPARγ induit un recrutement sélectif de cofacteurs, se traduisant par l'induction spécifique d'un sous-ensemble de gènes qui varie en fonction du niveau de différentiation cellulaire. La modulation sélective de PPARγ par le MEHP provoque une adipogenèse modérée dans des modèles cellulaires alors que l'exposition de modèles animaux aux phtalates induit des effets bénéfiques sur la tolérance au glucose et sur le développement de l'obésité. Toutefois, les phtalates ont une action complexe sur le métabolisme glucido-lipidique en faisant intervenir PPARγ mais aussi probablement PPARα et PPARß. Cette démonstration moléculaire et physiologique de l'interférence des polluants avec les récepteurs nucléaires PPAR souligne un rôle important de l'exposition à de tels composés dans les régulations métaboliques.
Resumo:
Steroid hormone receptors activate specific gene transcription by binding as hormone-receptor complexes to short DNA enhancer-like elements termed hormone response elements (HREs). We have shown previously that a highly conserved 66 amino acid region of the oestrogen (ER) and glucocorticoid (GR) receptors, which corresponds to part of the receptor DNA binding domain (region C) is responsible for determining the specificity of target gene activation. This region contains two sub-regions (CI and CII) analogous to the 'zinc-fingers' of the transcription factor TFIIIA. We show here that CI and CII appear to be separate domains both involved in DNA binding. Furthermore, using chimaeric ERs in which either the first (N-terminal) (CI) or second (CII) 'zinc finger' region has been exchanged with that of the GR, indicates that it is the first 'zinc finger' which largely determines target gene specificity. We suggest that receptor recognition of the HRE is analogous to that of the helix-turn-helix DNA binding motif in that the receptor binds to DNA as a dimer with the first 'zinc finger' lying in the major groove recognizing one half of the palindromic HRE, and that protein-DNA interaction is stabilized through non-specific DNA binding and dimer interactions contributed by the second 'zinc finger'.
Resumo:
In parasites, host specificity may result either from restricted dispersal capacity or from fixed coevolutionary host-parasite adaptations. Knowledge of those proximal mechanisms leading to particular host specificity is fundamental to understand host-parasite interactions and potential coevolution of parasites and hosts. The relative importance of these two mechanisms was quantified through infection and cross-infection experiments using mites and bats as a model. Monospecific pools of parasitic mites (Spinturnix myoti and S. andegavinus) were subjected either to individual bats belonging to their traditional, native bat host species, or to another substitute host species within the same bat genus (Myotis). The two parasite species reacted differently to these treatments. S. myoti exhibited a clear preference for, and had a higher fitness on, its native host, Myotis myotis. In contrast, S. andegavinus showed no host choice, although its fitness was higher on its native host M. daubentoni. The causal mechanisms mediating host specificity can apparently differ within closely related host-parasite systems.
Resumo:
In transplant rejection, graft versus host or autoimmune diseases T cells are mediating the pathophysiological processes. Compared to unspecific pharmacological immune suppression specific inhibition of those T cells, that are involved in the disease, would be an alternative and attractive approach. T cells are activated after their T cell receptor (TCR) recognizes an antigenic peptide displayed by the Major Histocompatibility Complex (MHC). Molecules that interact with MHC-peptide-complexes in a specific fashion should block T cells with identical specificity. Using the model of the SSX2 (103-111)/HLA-A*0201 complex we investigated a panel of MHC-peptide-specific Fab antibodies for their capacity blocking specific T cell clones. Like TCRs all Fab antibodies reacted with the MHC complex only when the SSX2 (103-111) peptide was displayed. By introducing single amino acid mutations in the HLA-A*0201 heavy chain we identified the K66 residue as the most critical binding similar to that of TCRs. However, some Fab antibodies did not inhibit the reactivity of a specific T cell clone against peptide pulsed, artificial targets, nor cells displaying the peptide after endogenous processing. Measurements of binding kinetics revealed that only those Fab antibodies were capable of blocking T cells that interacted with an affinity in the nanomolar range. Fab antibodies binding like TCRs with affinities on the lower micromolar range did not inhibit T cell reactivity. These results indicate that molecules that block T cells by competitive binding with the TCR must have the same specificity but higher affinity for the MHC-peptide-complex than the TCR.
Resumo:
In Brazil, human and canine visceral leishmaniasis (CVL) caused byLeishmania infantum has undergone urbanisation since 1980, constituting a public health problem, and serological tests are tools of choice for identifying infected dogs. Until recently, the Brazilian zoonoses control program recommended enzyme-linked immunosorbent assays (ELISA) and indirect immunofluorescence assays (IFA) as the screening and confirmatory methods, respectively, for the detection of canine infection. The purpose of this study was to estimate the accuracy of ELISA and IFA in parallel or serial combinations. The reference standard comprised the results of direct visualisation of parasites in histological sections, immunohistochemical test, or isolation of the parasite in culture. Samples from 98 cases and 1,327 noncases were included. Individually, both tests presented sensitivity of 91.8% and 90.8%, and specificity of 83.4 and 53.4%, for the ELISA and IFA, respectively. When tests were used in parallel combination, sensitivity attained 99.2%, while specificity dropped to 44.8%. When used in serial combination (ELISA followed by IFA), decreased sensitivity (83.3%) and increased specificity (92.5%) were observed. Serial testing approach improved specificity with moderate loss in sensitivity. This strategy could partially fulfill the needs of public health and dog owners for a more accurate diagnosis of CVL.