999 resultados para Filmes de Langmuir


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of the present study is to understand different mechanisms involved in the production and evolution of plasma by the pulsed laser ablation and radio frequency magnetron sputtering. These two methods are of particular interest, as these are well accomplished methods used for surface coatings, nanostructure fabrications and other thin film devices fabrications. Material science researchers all over the world are involved in the development of devices based on transparent conducting oxide (TCO) thin films. Our laboratory has been involved in the development of TCO devices like thin film diodes using zinc oxide (ZnO) and zinc magnesium oxide (ZnMgO), thin film transistors (TFT's) using zinc indium oxide and zinc indium tin oxide, and some electroluminescent (EL) devices by pulsed laser ablation and RF magnetron sputtering.In contrast to the extensive literature relating to pure ZnO and other thin films produced by various deposition techniques, there appears to have been relatively little effort directed towards the characterization of plasmas from which such films are produced. The knowledge of plasma dynamics corresponding to the variations in the input parameters of ablation and sputtering, with the kind of laser/magnetron used for the generation of plasma, is limited. To improve the quality of the deposited films for desired application, a sound understanding of the plume dynamics, physical and chemical properties of the species in the plume is required. Generally, there is a correlation between the plume dynamics and the structural properties of the films deposited. Thus the study of the characteristics of the plume contributes to a better understanding and control of the deposition process itself. The hydrodynamic expansion of the plume, the composition, and SIze distribution of clusters depend not only on initial conditions of plasma production but also on the ambient gas composition and pressure. The growth and deposition of the films are detennined by the thermodynamic parameters of the target material and initial conditions such as electron temperature and density of the plasma.For optimizing the deposition parameters of various films (stoichiometric or otherwise), in-situ or ex-situ monitoring of plasma plume dynamics become necessary for the purpose of repeatability and reliability. With this in mind, the plume dynamics and compositions of laser ablated and RF magnetron sputtered zinc oxide plasmas have been investigated. The plasmas studied were produced at conditions employed typically for the deposition of ZnO films by both methods. Apart from this two component ZnO plasma, a multi-component material (lead zirconium titanate) was ablated and plasma was characterized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El análisis estructural de sectores estratégicos (AESE) es una propuesta útil para los directores y gerentes de empresas, ya que les permite percibir mejor el entorno en que compiten sus organizaciones. De igual forma, contribuye a reducir la incertidumbre en los momentos de tomar decisiones. En este texto se analizará el sector de exhibición de filmes y videocintas en Colombia en el período comprendido entre el 2006 y el 2010. A pesar de que existen muchas empresas en este sector, solo se observaron las más representativas: Cine Colombia, Cinemark y Procinal. Se aplicarán las herramientas que proporciona el AESE: hacinamiento cuantitativo y cualitativo, panorama competitivo, fuerzas del mercado y estudio de competidores, entre otras. En el sector existen tres categorías: productores, exhibidores y distribuidores; el análisis se enfocará en la de exhibidores o dueños de teatros...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo del trabajo es la elaboración de una propuesta tecnológica que posibilite la formación continua de los profesores en la enseñanza básica, en el área de la lengua materna, partiendo del análisis de la aportación educativa de las películas en lo que se refiere al desarrollo de las habilidades de comunicación. En primer lugar trata las teorías del aprendizaje y de la imagen, y el proceso de enseñanza-aprendizaje en la escuela (funciones de la imagen y de la televisión en dicho proceso). Analiza los temas de los medios de comunicación de masas, de la lectura del discurso televisivo y de la utilización de documentos auténticos en el desarrollo de la competencia comunicativa. A partir de estas bases teóricas elabora la propuesta que se centra principalmente en los objetivos, la dinámica de trabajo, los recursos, y los contenidos y actividades de cada sesión.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Noticia sobre las conclusiones del trabajo de S. W. Linnett, que modifica la hip??tesis de Lewis y Langmuir sobre la teor??a de los octetes en la distribuci??n de los electrones de los ??tomos, estableciendo Linnett, que se trata de un doble cuarteto en lugar de un octeto.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La conquista de América fue un hecho violento de expoliación en el que, al tiempo que el conquistador tomó como objeto y pieza de trabajo al indígena, se construyó un imaginario de lo bárbaro. La sed de oro y poder del conquistador creó geografías míticas del paraíso, cuyo ejemplo más significativo es la leyenda de El Dorado, pero también se evidencia en la fiesta barroca que simboliza el desfile de poder por parte de las élites. Este artículo analiza las películas Aguirre y la ira de dios y Fitzcarraldo, de Werner Herzog, quien representó personajes y situaciones, geografías e imágenes de lo exótico.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of surface waves and an applied wind stress is studied in an ensemble of large eddy simulations to investigate the nature of deeply penetrating jets into an unstratified mixed layer. The influence of a steady monochromatic surface wave propagating parallel to the wind direction is parameterized using the wave-filtered Craik-Leibovich equations. Tracer trajectories and instantaneous downwelling velocities reveal classic counterrotating Langmuir rolls. The associated downwelling jets penetrate to depths in excess of the wave's Stokes depth scale, δs. Qualitative evidence suggests the depth of the jets is controlled by the Ekman depth scale. Analysis of turbulent kinetic energy (tke) budgets reveals a dynamical distinction between Langmuir turbulence and shear-driven turbulence. In the former, tke production is dominated by Stokes shear and a vertical flux term transports tke to a depth where it is dissipated. In the latter, tke production is from the mean shear and is locally balanced by dissipation. We define the turbulent Langmuir number Lat = (v*/Us)0.5 (v* is the ocean's friction velocity and Us is the surface Stokes drift velocity) and a turbulent anisotropy coefficient Rt = /( + ). The transition between shear-driven and Langmuir turbulence is investigated by varying external wave parameters δs and Lat and by diagnosing Rt and the Eulerian mean and Stokes shears. When either Lat or δs are sufficiently small the Stokes shear dominates the mean shear and the flow is preconditioned to Langmuir turbulence and the associated deeply penetrating jets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study uses large-eddy simulation (LES) to investigate the characteristics of Langmuir turbulence through the turbulent kinetic energy (TKE) budget. Based on an analysis of the TKE budget a velocity scale for Langmuir turbulence is proposed. The velocity scale depends on both the friction velocity and the surface Stokes drift associated with the wave field. The scaling leads to unique profiles of nondimensional dissipation rate and velocity component variances when the Stokes drift of the wave field is sufficiently large compared to the surface friction velocity. The existence of such a scaling shows that Langmuir turbulence can be considered as a turbulence regime in its own right, rather than a modification of shear-driven turbulence. Comparisons are made between the LES results and observations, but the lack of information concerning the wave field means these are mainly restricted to comparing profile shapes. The shapes of the LES profiles are consistent with observed profiles. The dissipation length scale for Langmuir turbulence is found to be similar to the dissipation length scale in the shear-driven boundary layer. Beyond this it is not possible to test the proposed scaling directly using available data. Entrainment at the base of the mixed layer is shown to be significantly enhanced over that due to normal shear turbulence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Stokes drift induced by surface waves distorts turbulence in the wind-driven mixed layer of the ocean, leading to the development of streamwise vortices, or Langmuir circulations, on a wide range of scales. We investigate the structure of the resulting Langmuir turbulence, and contrast it with the structure of shear turbulence, using rapid distortion theory (RDT) and kinematic simulation of turbulence. Firstly, these linear models show clearly why elongated streamwise vortices are produced in Langmuir turbulence, when Stokes drift tilts and stretches vertical vorticity into horizontal vorticity, whereas elongated streaky structures in streamwise velocity fluctuations (u) are produced in shear turbulence, because there is a cancellation in the streamwise vorticity equation and instead it is vertical vorticity that is amplified. Secondly, we develop scaling arguments, illustrated by analysing data from LES, that indicate that Langmuir turbulence is generated when the deformation of the turbulence by mean shear is much weaker than the deformation by the Stokes drift. These scalings motivate a quantitative RDT model of Langmuir turbulence that accounts for deformation of turbulence by Stokes drift and blocking by the air–sea interface that is shown to yield profiles of the velocity variances in good agreement with LES. The physical picture that emerges, at least in the LES, is as follows. Early in the life cycle of a Langmuir eddy initial turbulent disturbances of vertical vorticity are amplified algebraically by the Stokes drift into elongated streamwise vortices, the Langmuir eddies. The turbulence is thus in a near two-component state, with suppressed and . Near the surface, over a depth of order the integral length scale of the turbulence, the vertical velocity (w) is brought to zero by blocking of the air–sea interface. Since the turbulence is nearly two-component, this vertical energy is transferred into the spanwise fluctuations, considerably enhancing at the interface. After a time of order half the eddy decorrelation time the nonlinear processes, such as distortion by the strain field of the surrounding eddies, arrest the deformation and the Langmuir eddy decays. Presumably, Langmuir turbulence then consists of a statistically steady state of such Langmuir eddies. The analysis then provides a dynamical connection between the flow structures in LES of Langmuir turbulence and the dominant balance between Stokes production and dissipation in the turbulent kinetic energy budget, found by previous authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interface between water and Langmuir films of long chain aliphatic molecules is investigated using accurate intermolecular potentials. The stabilities of various ice structures which could form at the interface are examined. Antiferroelectric ice is found to be the most stable, but this stability depends crucially on the first layer of water. Ferroelectric structures are found to collapse upon relaxation. Our model was not able to differentiate between the different nucleation properties of C31H63OH and C30H61OH. A better description of the alcohol–water interaction is probably required to account for this difference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model for estimating the turbulent kinetic energy dissipation rate in the oceanic boundary layer, based on insights from rapid-distortion theory, is presented and tested. This model provides a possible explanation for the very high dissipation levels found by numerous authors near the surface. It is conceived that turbulence, injected into the water by breaking waves, is subsequently amplified due to its distortion by the mean shear of the wind-induced current and straining by the Stokes drift of surface waves. The partition of the turbulent shear stress into a shear-induced part and a wave-induced part is taken into account. In this picture, dissipation enhancement results from the same mechanism responsible for Langmuir circulations. Apart from a dimensionless depth and an eddy turn-over time, the dimensionless dissipation rate depends on the wave slope and wave age, which may be encapsulated in the turbulent Langmuir number La_t. For large La_t, or any Lat but large depth, the dissipation rate tends to the usual surface layer scaling, whereas when Lat is small, it is strongly enhanced near the surface, growing asymptotically as ɛ ∝ La_t^{-2} when La_t → 0. Results from this model are compared with observations from the WAVES and SWADE data sets, assuming that this is the dominant dissipation mechanism acting in the ocean surface layer and statistical measures of the corresponding fit indicate a substantial improvement over previous theoretical models. Comparisons are also carried out against more recent measurements, showing good order-of-magnitude agreement, even when shallow-water effects are important.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mechanism for the enhancement of the viscous dissipation rate of turbulent kinetic energy (TKE) in the oceanic boundary layer (OBL) is proposed, based on insights gained from rapid-distortion theory (RDT). In this mechanism, which complements mechanisms purely based on wave breaking, preexisting TKE is amplified and subsequently dissipated by the joint action of a mean Eulerian wind-induced shear current and the Stokes drift of surface waves, the same elements thought to be responsible for the generation of Langmuir circulations. Assuming that the TKE dissipation rate epsilon saturates to its equilibrium value over a time of the order one eddy turnover time of the turbulence, a new scaling expression, dependent on the turbulent Langmuir number, is derived for epsilon. For reasonable values of the input parameters, the new expression predicts an increase of the dissipation rate near the surface by orders of magnitude compared with usual surface-layer scaling estimates, consistent with available OBL data. These results establish on firmer grounds a suspected connection between two central OBL phenomena: dissipation enhancement and Langmuir circulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The turbulent mixing in thin ocean surface boundary layers (OSBL), which occupy the upper 100 m or so of the ocean, control the exchange of heat and trace gases between the atmosphere and ocean. Here we show that current parameterizations of this turbulent mixing lead to systematic and substantial errors in the depth of the OSBL in global climate models, which then leads to biases in sea surface temperature. One reason, we argue, is that current parameterizations are missing key surface-wave processes that force Langmuir turbulence that deepens the OSBL more rapidly than steady wind forcing. Scaling arguments are presented to identify two dimensionless parameters that measure the importance of wave forcing against wind forcing, and against buoyancy forcing. A global perspective on the occurrence of waveforced turbulence is developed using re-analysis data to compute these parameters globally. The diagnostic study developed here suggests that turbulent energy available for mixing the OSBL is under-estimated without forcing by surface waves. Wave-forcing and hence Langmuir turbulence could be important over wide areas of the ocean and in all seasons in the Southern Ocean. We conclude that surfacewave- forced Langmuir turbulence is an important process in the OSBL that requires parameterization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study uses large-eddy simulation to investigate the structure of the ocean surface boundary layer (OSBL) in the presence of Langmuir turbulence and stabilizing surface heat fluxes. The OSBL consists of a weakly stratified layer, despite a surface heat flux, above a stratified thermocline. The weakly stratified (mixed) layer is maintained by a combination of a turbulent heat flux produced by the wave-driven Stokes drift and downgradient turbulent diffusion. The scaling of turbulence statistics, such as dissipation and vertical velocity variance, is only affected by the surface heat flux through changes in the mixed layer depth. Diagnostic models are proposed for the equilibrium boundary layer and mixed layer depths in the presence of surface heating. The models are a function of the initial mixed layer depth before heating is imposed and the Langmuir stability length. In the presence of radiative heating, the models are extended to account for the depth profile of the heating.