973 resultados para Field Admitting (one-dimensional) Local Class Field Theory
Resumo:
An integrable Kondo problem in the one-dimensional supersymmetric extended Hubbard model is studied by means of the boundary graded quantum inverse scattering method. The boundary K-matrices depending on the local moments of the impurities are presented as a non-trivial realization of the graded reflection equation algebras in a two-dimensional impurity Hilbert space. Further, the model is solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained.
Resumo:
Three kinds of integrable Kondo problems in one-dimensional extended Hubbard models are studied by means of the boundary graded quantum inverse scattering method. The boundary K matrices depending on the local moments of the impurities are presented as a nontrivial realization of the graded reflection equation algebras acting in a (2s alpha + 1)-dimensional impurity Hilbert space. Furthermore, these models are solved using the algebraic Bethe ansatz method, and the Bethe ansatz equations are obtained.
Resumo:
Integrable Kondo impurities in two cases of one-dimensional q-deformed t-J models are studied by means of the boundary Z(2)-graded quantum inverse scattering method. The boundary K matrices depending on the local magnetic moments of the impurities are presented as nontrivial realizations of the reflection equation algebras in an impurity Hilbert space. Furthermore, these models are solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained.
Resumo:
Using the exact Bethe ansatz solution of the Hubbard model and Luttinger liquid theory, we investigate the density profiles and collective modes of one-dimensional ultracold fermions confined in an optical lattice with a harmonic trapping potential. We determine a generic phase diagram in terms of a characteristic filling factor and a dimensionless coupling constant. The collective oscillations of the atomic mass density, a technique that is commonly used in experiments, provide a signature of the quantum phase transition from the metallic phase to the Mott-insulator phase. A detailed experimental implementation is proposed.
Resumo:
We calculate the density profiles and density correlation functions of the one-dimensional Bose gas in a harmonic trap, using the exact finite-temperature solutions for the uniform case, and applying a local density approximation. The results are valid for a trapping potential that is slowly varying relative to a correlation length. They allow a direct experimental test of the transition from the weak-coupling Gross-Pitaevskii regime to the strong-coupling, fermionic Tonks-Girardeau regime. We also calculate the average two-particle correlation which characterizes the bulk properties of the sample, and find that it can be well approximated by the value of the local pair correlation in the trap center.
Resumo:
The effect of unitary noise on the discrete one-dimensional quantum walk is studied using computer simulations. For the noiseless quantum walk, starting at the origin (n=0) at time t=0, the position distribution P-t(n) at time t is very different from the Gaussian distribution obtained for the classical random walk. Furthermore, its standard deviation, sigma(t) scales as sigma(t)similar tot, unlike the classical random walk for which sigma(t)similar toroott. It is shown that when the quantum walk is exposed to unitary noise, it exhibits a crossover from quantum behavior for short times to classical-like behavior for long times. The crossover time is found to be Tsimilar toalpha(-2), where alpha is the standard deviation of the noise.
Resumo:
We discuss existence and multiplicity of positive solutions of the Dirichlet problem for the quasilinear ordinary differential equation-(u' / root 1 - u'(2))' = f(t, u). Depending on the behaviour of f = f(t, s) near s = 0, we prove the existence of either one, or two, or three, or infinitely many positive solutions. In general, the positivity of f is not required. All results are obtained by reduction to an equivalent non-singular problem to which variational or topological methods apply in a classical fashion.
Resumo:
This paper is devoted to the synchronization of a dynamical system defined by two different coupling versions of two identical piecewise linear bimodal maps. We consider both local and global studies, using different tools as natural transversal Lyapunov exponent, Lyapunov functions, eigenvalues and eigenvectors and numerical simulations. We obtain theoretical results for the existence of synchronization on coupling parameter range. We characterize the synchronization manifold as an attractor and measure the synchronization speed. In one coupling version, we give a necessary and sufficient condition for the synchronization. We study the basins of synchronization and show that, depending upon the type of coupling, they can have very different shapes and are not necessarily constituted by the whole phase space; in some cases, they can be riddled.
Resumo:
The symmetrical two-dimensional quantum wire with two straight leads joined to an arbitrarily shaped interior cavity is studied with emphasis on the single-mode approximation. It is found that for both transmission and bound-state problems the solution is equivalent to that for an energy-dependent one-dimensional square well. Quantum wires with a circular bend, and with single and double right-angle bends, are examined as examples. We also indicate a possible way to detect bound states in a double bend based on the experimental setup of Wu et al.
Resumo:
A recurring task in the analysis of mass genome annotation data from high-throughput technologies is the identification of peaks or clusters in a noisy signal profile. Examples of such applications are the definition of promoters on the basis of transcription start site profiles, the mapping of transcription factor binding sites based on ChIP-chip data and the identification of quantitative trait loci (QTL) from whole genome SNP profiles. Input to such an analysis is a set of genome coordinates associated with counts or intensities. The output consists of a discrete number of peaks with respective volumes, extensions and center positions. We have developed for this purpose a flexible one-dimensional clustering tool, called MADAP, which we make available as a web server and as standalone program. A set of parameters enables the user to customize the procedure to a specific problem. The web server, which returns results in textual and graphical form, is useful for small to medium-scale applications, as well as for evaluation and parameter tuning in view of large-scale applications, requiring a local installation. The program written in C++ can be freely downloaded from ftp://ftp.epd.unil.ch/pub/software/unix/madap. The MADAP web server can be accessed at http://www.isrec.isb-sib.ch/madap/.
Resumo:
Cellular automata are models for massively parallel computation. A cellular automaton consists of cells which are arranged in some kind of regular lattice and a local update rule which updates the state of each cell according to the states of the cell's neighbors on each step of the computation. This work focuses on reversible one-dimensional cellular automata in which the cells are arranged in a two-way in_nite line and the computation is reversible, that is, the previous states of the cells can be derived from the current ones. In this work it is shown that several properties of reversible one-dimensional cellular automata are algorithmically undecidable, that is, there exists no algorithm that would tell whether a given cellular automaton has the property or not. It is shown that the tiling problem of Wang tiles remains undecidable even in some very restricted special cases. It follows that it is undecidable whether some given states will always appear in computations by the given cellular automaton. It also follows that a weaker form of expansivity, which is a concept of dynamical systems, is an undecidable property for reversible one-dimensional cellular automata. It is shown that several properties of dynamical systems are undecidable for reversible one-dimensional cellular automata. It shown that sensitivity to initial conditions and topological mixing are undecidable properties. Furthermore, non-sensitive and mixing cellular automata are recursively inseparable. It follows that also chaotic behavior is an undecidable property for reversible one-dimensional cellular automata.
Resumo:
The behaviour of the lattice parameters of HTCuCN (high-temperature form), AgCN and AuCN have been investigated as a function of temperature over the temperature range 90–490 K. All materials show one-dimensional negative thermal expansion (NTE) along the ––(M––CN)–– chain direction c (ac(HT-CuCN) ¼32.1 10–6 K1, ac(AgCN)¼23.910–6 K1 and ac(AuCN) ¼9.3106 K1 over the temperature range 90–490 K). The origin of this behaviour has been studied using RMC modelling of Bragg and total neutron diffraction data from AgCN and AuCN at 10 and 300 K. These analyses yield details of the local motions within the chains responsible for NTE. The low-temperature form of CuCN, LT-CuCN, has been studied using single-crystal X-ray diffraction. In this form of CuCN, wavelike distortions of the ––(Cu––CN)–– chains occur in the static structure, which are reminiscent of the motions seen in the RMC modelling of AgCN and AuCN, which are responsible for the NTE behaviour.
Resumo:
A One-Dimensional Time to Explosion (ODTX) apparatus has been used to study the times to explosion of a number of compositions based on RDX and HMX over a range of contact temperatures. The times to explosion at any given temperature tend to increase from RDX to HMX and with the proportion of HMX in the composition. Thermal ignition theory has been applied to time to explosion data to calculate kinetic parameters. The apparent activation energy for all of the compositions lay between 127 kJ mol−1 and 146 kJ mol−1. There were big differences in the pre-exponential factor and this controlled the time to explosion rather than the activation energy for the process.
Resumo:
In this paper we consider the case of a Bose gas in low dimension in order to illustrate the applicability of a method that allows us to construct analytical relations, valid for a broad range of coupling parameters, for a function which asymptotic expansions are known. The method is well suitable to investigate the problem of stability of a collection of Bose particles trapped in one- dimensional configuration for the case where the scattering length presents a negative value. The eigenvalues for this interacting quantum one-dimensional many particle system become negative when the interactions overcome the trapping energy and, in this case, the system becomes unstable. Here we calculate the critical coupling parameter and apply for the case of Lithium atoms obtaining the critical number of particles for the limit of stability.
Resumo:
In this study the effect of the cultivar on the volatile profile of five different banana varieties was evaluated and determined by dynamic headspace solid-phase microextraction (dHS-SPME) combined with one-dimensional gas chromatography–mass spectrometry (1D-GC–qMS). This approach allowed the definition of a volatile metabolite profile to each banana variety and can be used as pertinent criteria of differentiation. The investigated banana varieties (Dwarf Cavendish, Prata, Maçã, Ouro and Platano) have certified botanical origin and belong to the Musaceae family, the most common genomic group cultivated in Madeira Island (Portugal). The influence of dHS-SPME experimental factors, namely, fibre coating, extraction time and extraction temperature, on the equilibrium headspace analysis was investigated and optimised using univariate optimisation design. A total of 68 volatile organic metabolites (VOMs) were tentatively identified and used to profile the volatile composition in different banana cultivars, thus emphasising the sensitivity and applicability of SPME for establishment of the volatile metabolomic pattern of plant secondary metabolites. Ethyl esters were found to comprise the largest chemical class accounting 80.9%, 86.5%, 51.2%, 90.1% and 6.1% of total peak area for Dwarf Cavendish, Prata, Ouro, Maçã and Platano volatile fraction, respectively. Gas chromatographic peak areas were submitted to multivariate statistical analysis (principal component and stepwise linear discriminant analysis) in order to visualise clusters within samples and to detect the volatile metabolites able to differentiate banana cultivars. The application of the multivariate analysis on the VOMs data set resulted in predictive abilities of 90% as evaluated by the cross-validation procedure.