998 resultados para Fets de maig, França, 1968
Resumo:
This directory is intended to assist the general camping public and contains listings of both public and private facilities known to exist as a result of survey questionnaires.
Resumo:
Before the Iowa Department of Transportation (DOT) was established by legislation in July 1974, there were several state agencies that handled the tasks that are now the responsibility of an integrated, multimodal Iowa DOT. Among those agencies was the Iowa State Highway Commission (IHC). You are invited to read a brief history of the Iowa DOT here:http://www.iowadot.gov/about/organizationalhistory.htm The IHC operated as an independent state agency between 1913 and 1974. In 1968, the IHC created and released This is YOUR Highway Commission, a 24 ½- minute film that showcased the responsibilities and functions of the IHC. The narrator describes the activities of various offices and employees, and explains how those activities benefited Iowa’s citizens and motorists. The film journeys through all areas of IHC responsibility to Iowa’s roadways, including administration, planning, design, bidding, right of way, materials, construction, maintenance and facilities. As part of the Iowa DOT’s effort to preserve and archive its historical resources, the original 16mm film was professionally cleaned, restored and digitized so that it could be made available via this website. The Iowa DOT is currently researching and compiling information necessary to prepare detailed biographies of the IHC employees identified in the film. Included in each biography will be still frames taken from the film, as well as other images from the Iowa DOT’s archives. This more comprehensive description of the film will be available in the future. In the meantime, below is a list of the IHC employees who have been identified. The list is arranged in the order in which each employee first appears in the film. There remain numerous unidentified employees in the film, and the Iowa DOT would greatly appreciate any assistance in identifying them. If you recognize an IHC employee in the film who is not on this list, please contactbeth.collins@dot.iowa.gov with any information you feel would be useful. Identified employees: Joseph Coupal, Jr.—Director of Highways Harry Bradley—Commissioner Derby Thompson—Commissioner John Hansen—Commissioner Koert Voorhees—Commissioner Harold Shiel—Engineer Howard Gunnerson—Chief engineer Martha Groth—Commission Secretary Robert Barry—Commissioner Nancy Groomes—Director’s Secretary Russell Moreland—Planning C.B. Anderson—Planning Gus Anderson—Engineer Carl Schach—Deputy chief engineer Raymond Kassel—Hearings engineer (later director of Transportation) Bob Given—Deputy chief engineer Don McLean—Director of Engineering Howard Thielen—Surveying (using rod) John Huss—Surveying (using leveling transit) John “Harley” McCoy—Surveying (taking notes) Jim Smith—Right of Way Keith Davis—Contracts Sherrill P. Freed—Sign Shop Olav Smedal—Director of Public Information
Resumo:
This study was designed to provide background information on asphaltic concrete mixtures peculiar to northwest Iowa. This background is necessary to provide the basis for future specifications. There were several projects let in 1967 involving l", 3/4" and 3/8" mixes of Type "B'' asphaltic concrete which specified in part, II Not less than 40% of the material passing the No. 200 sieve shall be pulverized limestone or mineral filler, but in no case shall the per cent of pulverized limestone or mineral filler passing the No. 200 sieve be less than 2%. No credit will be allowed for limestone in gravel - II Northwest Iowa has no suitable limestone or mineral filler locally available. As a result, this material has to be imported, raising the cost of the mix approximately twenty-five cents per ton. The purpose of this study, therefore, was designed to compare some original job mix samples with alternate mixes from the same local material, but without the addition of pulverized limestone or mineral filler. Since the filler from the crushed gravel does not have the same crushing characteristics or sieve analysis as the pulverized limestone or mineral filler, they could not be compared on an equal percentage basis. Therefore, the alternate mixes were made to conform to the following proposed specification, "No less than 40% of the material passing No. 200 sieve shall be pulverized limestone or mineral filler or a 100% crushed gravel, but in no case shall the per cent of pulverized limestone or mineral filler or a 100% crushed gravel passing the No. 200 sieve be less than 2%."
Resumo:
The amount of asphalt cement in asphaltic concrete has a definite effect on its durability under adverse conditions. The expansion of the transportation system to more and heavier loads has also made the percentage of asphalt cement in a mix more critical. The laboratory mixer does not duplicate the mixing effect of the large pugmills; therefore, it is impossible to be completely sure of the asphalt cement needed for each mix. This percentage quite often must be varied in the field. With a central testing laboratory and the high production of mixing plants today, a large amount of asphaltic concrete is produced before a sample can be tested to determine if the asphalt content is correct. If the asphalt content lowers the durability or stability of a mix, more maintenance will be required in the future. The purpose of this project is to determine the value of a mobile laboratory in the field, the feasibility of providing adequate, early testing in the field, and correlation with the central laboratory. The major purpose was to determine as soon as possible the best percentage of asphalt.
Resumo:
The use of lightweight aggregates in prestressed concrete is becoming more of a reality as our design criteria become more demanding. Bridge girders of greater lengths have been restricted from travel on many of our highways because the weight of the combined girders and transporting vehicle is excessive making hauls of any distance prohibitive. This, along with new safety recommendations, prompted the State of Iowa to investigate the use of lightweight aggregate bridge girders. A series of three projects was started to investigate the possibility of using lightweight aggregate in prestressed concrete. The object of this project is to study the effect which lightweight aggregate concrete has on the camber of bridge girders when used in a field situation.
Resumo:
The Standard Specifications for this project included requirements for placing two 500 foot test sections of Type B asphaltic concrete with 1-1/2 per cent asbestos fibres (mix size 3/8 inch, lift thickness 3/4 inch) as part of the regular construction of the surface course. These requirements were designed to provide asbestos modified mixtures for laboratory analysis and road performance evaluation. This report provides the preliminary results and analysis of test data obtained from tests on the mixtures placed on the roadway. Previous research by G. S. Zuelke (1) and J. H. Kestzman et al (2) indicated that asphaltic concrete mixtures modified with asbestos fibres improved stability, decreased permeability, and allowed the use of higher bitumen contents. This study indicated that the addition of asbestos fibres would permit the use of higher bitumen contents, theoretically improving durability, without adverse results. An indication was also obtained to the effect that asbestos mixtures were more difficult to compact in the field.
Resumo:
The BPR type Roughometer has been used by the Iowa State Highway Commission since 1955 for the evaluation of the relative roughness of the various Iowa road surfaces. Since the commencement of this program, standardized information about the roughness of the various Iowa roads with respect to their type, construction, location and usage has been obtained. The Roughometer has also served to improve the economics and quality of road construction by making the roughness results of various practices available to all who are interested. In 1965, the Portland Cement Association developed a device known as the PCA Road Meter for measuring road roughness. Mounted in a regular passenger car, the Road Meter is a simple electromechanical device of durable construction which can perform consistently with extremely low maintenance. In 1967, the Iowa State Highway Commission's Laboratory constructed a P.C.A. type Road Meter in order to provide an efficient and reliable method for measuring the Present Serviceability Index for the state's highways. Another possibility was that after considerable testing the Road Meter might eventually replace the Roughometer. Some advantages of the Road Meter over the Roughometer are: (1) Road Meter tests are made by the automobile driver and one assistant without the need of traffic protection. The Roughometer has a crew of four men; two operating the roughometer and two driving safety vehicles. (2) The Road Meter is able to do more miles of testing because of its faster testing speed and the fa.ct that it is the only vehicle involved in the testing. (3) Because of the faster testing speed, the Road Meter gives a better indication of how the road actually rides to the average highway traveler. (4) The cost of operating a Road Meter is less than that of a Roughometer because of the fewer number of vehicles and men needed in testing.
Resumo:
In November of 1966, an investigation of the rigid Class I asphalt treated base specification, requiring 70 per cent crushed limestone, was initiated. It was felt that it might be possible to modify the need for crushed particles, in the construction of basis on heavy duty roads, at a savings, by using more local materials, without sacrificing strength and/or durability. This is a short study on typical sources of pit run gravel, with various percentages of limestone. It is conducted with an eye open to the possibility that our specifications may be modified. The possibility that further investigation may be desirable is not ignored.
Resumo:
This study was undertaken to evaluate the suitability of various stones which play an important role in the properties of compacted mixtures in asphalt treated bases. The determination of the effect of water temperature on the cohesion of the mixes is investigated. A number of stones were prepared for the test. Attention is paid to the particular source of stone with the corresponding test results. A preliminary study of the effect of lime when added to mixed aggregate was also conducted. The purpose of this study is to provide needed information on the cohesive characteristics of asphalt treated bases using a wide range of stones. This study is also to evaluate the suitability of the various stone sources.
Resumo:
The durability of concrete is a most important aspect in pavement life. Deterioration of the interstate portland cement concrete pavement has prompted various studies of factors which may contribute to the durability. Studies of cores taken from deteriorated areas indicated that the larger particles of coarse aggregate may contribute greatly to the problem. This indication was mainly due to the analysis of the cracking pattern which showed that most of the cracks passed through the larger aggregates and the larger aggregate particles were more cracked than the smaller particles. The purpose of this project is to determine if the size of the coarse aggregate has a bearing on the durability of freeze and thaw beams. A secondary purpose of this project is to determine what effect the method of curing and proportions have on the durability of freeze and thaw beams.
Resumo:
In some asphaltic concrete mixes asphalt absorption in field mixes is difficult to predict by the routine mix design tests presently being used. Latent or slow absorption in hot mixes is hard to compensate for in field control due to aggregate gradations being near maximum density. If critical asphalt need could be changed by increasing voids in the mineral aggregate so that more freedom could be exercised in compensating for the absorption, this may aid in design. The voids in the mineral aggregate can be related to composite gradation of total aggregate in a mixture, i.e. if a composite gradation of aggregate is finer than that of maximum density curve, the V.M.A. will be greater than that of a mix of maximum density. The typical gradation of Iowa Type 'A' mixes is finer than a gradation which is near the centerline of the specification at sieves larger than the No. 30 and coarser at the lower sieve sizes. The mixes of the typical gradation will have higher V.M.A. than those of the near centerline mixes. By studying properties of the mixes of the typical gradation and comparing them with those of the mixes of maximum density, it may aid in the modification and simplification of our present testing methods and specification requirements while still maintaining control of quality of the mix by controlling voids, stability, gradation and asphalt content.
Resumo:
El Ateneu Flor de Maig fue construido en Poblenou (Barcelona) hace más de cien años como sede de una de las mayores cooperativas de Catalunya. Desde su fundación hasta hoy día siempre ha estado ligado a la memoria del barrio, representando un símbolo de resistencia y cooperación para muchos de los vecinos del Poblenou. El pasado 2012 en el contexto de recortes que llevan a cabo las distintas administraciones públicas del Estado, el dinero municipal que proveía del pago del alquiler a los dueños del edificio y que ponía a disposición de los vecinos su uso, deja de llegar y éstos cierran sus puertas y con ello el espacio de articulación vecinal que suponía. Meses después, diversos colectivos del barrio agrupados bajo la Plataforma Recuperem La Flor de Maig, deciden “okupar” el edificio y convertirlo, según sus discursos, en un elemento de “transformación”, una alternativa frente al contexto de intervención y reforma urbana que representa el 22@ donde se dan la mano formas de gestión asamblearias, usos alternativos del espacio y una reivindicación del espíritu cooperativo inicial, dando así continuidad a toda una tradición de resistencia común. Sin embargo, los colectivos que okupan el Ateneu mantienen intereses y formas de entender su uso enfrentadas, lo que provoca conflictos y roces, no solo entre ellos sino también con otros vecinos del entorno, originando determinadas respuestas. Activistas, jóvenes de la izquierda independentista, desempleados, cooperativistas, emprendedores y artistas se mezclan en la Assemblea y Comisiones de la Flor de Maig. Desde la antropología nos podemos acercar a esa situación bajo la consideración de “frontera” en el uso del espacio. Este experimento “transformador” podría llegar a suponer, por otro lado, un “caballo de Troya” involuntario que ahonde en el proceso de desplazamiento de la población original del barrio iniciado hace unos años, favoreciendo su terciariación y aburguesamiento.