224 resultados para Ferromagnetism


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Orthoferrites AFeO3 (A = rare earth) are an important class of perovskite oxides that exhibit weak ferromagnetism. These materials find numerous applications as chemical sensors, cathodes for fuel cells and catalysis, which make them interesting from the standpoint of science and technology. Their structural, electrical and magnetic properties are dependent on many factors such as the preparation method, heat treatment conditions, chemical composition and replacement of cations in sites A and/or B. In this paper, LaFe1-xMnxO3 (0 ≤ x ≤ 1) orthoferrites-type was prepared by Pechini method and Microwave-assisted combustion reaction in order to evaluate the influence of synthesis route on the formation of oxide, as well as the effect of parcial replacement of iron by manganese and heat treatment on the magnetic properties. The precursor powders were calcined at 700°C, 900°C, 1100°C and 1300°C for 4 hours and they were characterized by the techniques: Thermogravimetric analysis (TGA), X ray diffraction (XRD), Refinement by Rietveld method, Scanning electron microscopy (SEM), Reduction temperature programmed (RTP) and Magnetic hysteresis measurements performed at room temperature. According to the XRD patterns, the formation of perovskite phase with orthorhombic structure was observed for the systems where 0 ≤ x ≤ 0.5 and rhombohedral for x = 1. The results also showed a decrease of lattice parameters with the parcial replacement of iron by manganese and consequently a reduction in cell volume. The hysteresis curves exhibited weak ferromagnetism for the systems prepared by both synthesis methods. However, a dependence of magnetization as a function of dopant content was observed for samples produced by Pechini method. As for the systems prepared by combustion reaction, it was found that the secondary phases exert a strong influence on the magnetic behavior

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A room temperature ferromagnetic phase is observed in samples of poly(3-hexylthiophene) partially doped with ClO (4) over bar. The magnetic behavior presents a strong dependence on the sample preparation conditions, in particular, a dependence with the final potential of the sample after reduction. The origin of the ferromagnetism is proposed to be associated with interactions between spin 1/2 polarons formed in the polymeric chain upon doping. The dependence of saturation and spontaneous magnetization as the function of the final potential after reduction shows a way to control the magnetic properties of this polymer. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amorphous and crystalline thin films of Mn-doped(0.5%-10%) GaAs and crystalline thin films of Zn1-xCoxO(x = 3%-20%) were investigated by means of magnetic susceptibility and electron spin resonance (ESR). For the Mn-doped GaAs samples, our results show the absence of ferromagnetic ordering for the amorphous films in the 300 > T > 2 K temperature range, in contrast to the ferromagnetism found in crystalline films for T-C < 110 K. A single ESR line with a temperature independent g-value (g similar to 2) is observed for the amorphous films, and the behavior of this ESR linewidth depends on the level of crystallinity of the film. For the Mn-doped GaAs crystalline films, only a ferromagnetic mode is observed for T < TC when the film is ferromagnetic. Turning now the Zn1-xCoxO films, ferromagnetic loops were observed at room temperature for these films. The magnetization data show an increasing of the saturation magnetization M. as a function of x reaching a maximum value for x approximate to 10%. ESR experiments at T = 300 K in the same films show a strong anisotropic ferromagnetic mode (FMR) for x = 0.10.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Room temperature ferromagnetic behavior has been observed in pressed pellets of doped poly(3-methylthiophene). In this work we show that thermoremance data taken in two different ways favours the interpretation of data in terms of the Dzialoshinski-Moriya anisotropic superexchange interaction of the polarons via dopant anions giving rise to weak ferromagnetism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magnetic properties of doped pellets of poly(3-methylthiophene) showing room temperature ferromagnetic behaviour have been discussed in a previous article. The magnetic behaviour was attributed to a weak ferromagnetic phase, due to the superexchange interaction of polarons via the dopant anions. The Dzialoshinsky-Morya interaction among canted spins was proposed to explain the ferromagnetism. In this article the main conclusions of that work concerning the magnetic behaviour are revised. The basic assumption now is that the magnetic moments are spin 1/2 polarons that can interact antiferromagnetically and/or ferromagnetically. In the small crystalline regions of the polymer, which are identified with the polymer portion that remains ferromagnetic at room temperature, the interaction gives rise to S = 0 and 1 bipolarons and the S = 1 triplet state is lower in energy. In the disordered region, disorder will prevent the complete S = 1 and 0 coupling and bands of polarons ferromagnetically and antiferromagnetically coupled will appear. Using this approach, all the magnetization data can be qualitatively explained, as well as the electron spin resonance data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of a nearest-neighbor Coulomb repulsion of strength V on the properties of the ferromagnetic Kondo model is analyzed using computational techniques. The Hamiltonian studied here is defined on a chain using localized S = 1/2 spins, and one orbital per site. Special emphasis is given to the influence of the Coulomb repulsion on the regions of phase separation recently discovered in this family of models, as well as on the double-exchange-induced ferromagnetic ground state. When phase separation dominates at V= 0, the Coulomb interaction breaks the large domains of the two competing phases into small islands of one phase embedded into the other. This is in agreement with several experimental results, as discussed in the text. Vestiges of the original phase separation regime are found in the spin structure factor as incommensurate peaks, even at large values of V. In the ferromagnetic regime close to density n = 0.5, the Coulomb interaction induces tendencies to charge ordering without altering the fully polarized character of the state. This regime of charge-ordered ferromagnetism may be related with experimental observations of a similar phase by Chen and Cheong [Phys. Rev. Lett. 76, 4042 (1996)]. Our results reinforce the recently introduced notion [see, e.g., S. Yunoki et al., Phys. Rev. Lett. 80, 845 (1998)] that in realistic models for manganites analyzed with unbiased many-body techniques, the ground state properties arise from a competition between ferromagnetism and phase-separation - charge-ordering tendencies. ©1999 The American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discovery of the spatial uniform coexistence of superconductivity and ferromagnetism in rutheno-cuprates, RuSr2GdCu2O8 (Ru-1212), has spurred an extraordinary development in the study of the competition between magnetism and superconductivity. However, several points of their preparation process and characterization that determine their superconductive behavior are still obscure. The improvement of sample preparation conditions involves some thermal treatments in inert atmosphere. The first treatment results in the immediate formation of Sr2GdRuO 6. Using the CuO composition as a precursor, we produced Ru-1212. To turn it metallic and superconductor, besides the previous treatment, a final sinterization is carried out in oxygen flow for several days. Three Ru-1212 samples were produced by varying the last sinterization time (two, four, and six days under oxygen flow). Through measurements of x-ray diffraction, scanning electron microscopy, differential thermal analysis, magnetic susceptibility and mechanical spectroscopy, it was studied the influence of the treatments under oxygen atmosphere on the structural and superconducting properties of the material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the discovery of the high Tc superconductors, many researches have been carried out on the different properties of these materials, especially on the transition temperature into the superconducting state. The rutheno-cuprates belong to a new class of composites, which were synthesized for the first time by Bauernfeind in 1995. Bernhard and collaborators discovered, in 1999, the coexistence of the ferromagnetism and the superconductivity in this phase, which is known as antagonistic phenomenon in the electromagnetism due to spin-charge interactions established in these states. However, the physical nature of the superconducting and magnetic states is still very obscure. The non-stoichiometric (interstitial) oxygen is considered as a possible cause for the non-uniformity of the sample properties. In this paper, results of mechanical spectroscopy in Ru-1212 samples are presented showing complex anelastic spectra, which were attributed to the mobility of the interstitial oxygen atoms in the Ru-1212 lattice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogenated bulk Zn1-xCoxO samples were synthesized via standard solid-state reaction route with Co molar concentrations up to 15 at.%. Magnetic characterization demonstrates a room temperature ferromagnetic behavior associated to a paramagnetic Curie-Weiss component. Detailed microstructural analysis was carried out to exclude the presence of extrinsic sources of ferromagnetism. The magnetization increases linearly as a function of Co concentration. Hall measurements reveal an insulating character for the whole set of samples. In this context, the defect mediated magnetic coupling between the Co atoms under the scope of the bound magnetic polarons model is used to interpret the observed room temperature ferromagnetism. © 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we investigate theoretically the spin-resolved local density of states (SR-LDOS) of a ferromagnetic (FM) island hybridized with an adatom, which is described by the Single Impurity Anderson Model (SIAM). Our results are comparable with Scanning Tunneling Microscope (STM) experimental data. © 2012 Springer Science+Business Media, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The understanding and control of ferromagnetism in diluted magnetic semiconducting oxides (DMO) is a special challenge in solid-state physics and materials science due to its impact in magneto-optical devices and spintronics. Several studies and mechanisms have been proposed to explain intrinsic ferromagnetism in DMO compounds since the theoretical prediction of room-temperature ferromagnetism. However, genuine and intrinsic ferromagnetism in 3d-transition metal-doped n-type ZnO semiconductors is still a controversial issue. Furthermore, for DMO nanoparticles, some special physical and chemical effects may also play a role. In this contribution, structural and magnetic properties of sonochemically prepared cobalt-doped ZnO nanoparticles were investigated. A set of ZnO samples was prepared varying cobalt molar concentration and time of ultrasonic exposure. The obtained results showed that single phase samples can be obtained by the sonochemical method. However, cobalt nanoclusters can be detected depending on synthesis conditions. Magnetic measurements indicated a possible ferromagnetic response, associated to defects and cobalt substitutions at the zinc site by cobalt. However, ferromagnetism is depleted at higher magnetic fields. Also, an antiferromagnetic response is detected due to cobalt oxide cluster at high cobalt molar concentrations. © 2012 Springer Science+Business Media, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the structural and magnetic properties of Co2MnO 4, partially substituted by Bi at the octahedral site. Bismuth enhances ferromagnetism due to a decrease of the Co2+-Co2+ antiferromagnetic interactions and an increase of the Mn3+-Mn 4+ exchanges. Spurious phases (magnetic and/or nonmagnetic oxides) can easily form because of the large differences between the ionic radii of Bi3+ and Co3+, hiding or altering the intrinsic physical properties of the main BixCo2-xMnO4 phase. An easy way to eliminate the secondary phases is using acid reagents. Short-time etching of Bi0.1Co1.9MnO4 using nitric acid was successfully used, keeping most of the properties of the initial compound, with no alteration of the crystallographic structure. Final stoichiometry was respected (∼Bi0.08Co1.82MnO4), meaning that the material after etching definitely contains bismuth elements in its structure and the observed properties are intrinsic to the oxide spinel. Additional experiments were performed as a function of the synthesis conditions, showing that an optimal pH value of 7 allowed the best magnetic response of the non-doped material. © 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)