940 resultados para Femoral-neck
Resumo:
Surgical navigation might increase the safety of osteochondroplasty procedures in patients with femoroacetabular impingement. Feasibility and accuracy of navigation of a surgical reaming device were assessed. Three-dimensional models of 18 identical sawbone femora and 5 cadaver hips were created. Custom software was used to plan and perform repeated computer-assisted osteochondroplasty procedures using a navigated burr. Postoperative 3-dimensional models were created and compared with the preoperative models. A Bland-Altmann analysis assessing α angle and offset ratio accuracy showed even distribution along the zero line with narrow confidence intervals. No differences in α angle and offset ratio accuracy (P = 0.486 and P = 0.2) were detected between both observers. Planning and conduction of navigated osteochondroplasty using a surgical reaming device is feasible and accurate.
Resumo:
Early radiographic detection of femoroacetabular impingement might prevent initiation and progression of osteoarthritis. The structural abnormality in femoral-induced femoroacetabular impingement (cam type) is frequently asphericity at the anterosuperior head/neck contour. To determine which of six radiographic projections (anteroposterior, Dunn, Dunn/45 degrees flexion, cross-table/15 degrees internal rotation, cross-table/neutral rotation, and cross-table/15 degrees external rotation) best identifies femoral head/neck asphericity, we studied 21 desiccated femurs; 11 with an aspherical femoral head/neck contour and 10 with a spherical femoral head/neck contour. To radiographically quantify femoral head asphericity, we measured the angle where the femoral head/neck leaves sphericity (angle alpha). The aspherical femoral head/neck contours had a greater maximum angle alpha (70 degrees ) compared with the spherical head/neck contours (50 degrees ). The angle alpha varied depending on the radiographic projection: it was greatest in the Dunn view with 45 degrees hip flexion (71 degrees +/- 10 degrees ) and least in the cross-table view in 15 degrees external rotation (51 degrees +/- 7 degrees ). Diagnosis of a pathologic femoral head/neck contour depends on the radiologic projection. The Dunn view in 45 degrees or 90 degrees flexion or a cross-table projection in internal rotation best show femoral head/neck asphericity, whereas anteroposterior or externally rotated cross-table views are likely to miss asphericity. Level of Evidence: Prognostic study, level II-1 (retrospective study).
Resumo:
Asphericity of the femoral head-neck junction is one cause for femoroacetabular impingement of the hip. However, the asphericity often is underestimated on conventional radiographs. This study compares the presence of asphericity on conventional radiographs with its appearance on radial slices of magnetic resonance arthrography (MRA). We retrospectively reviewed 58 selected hips in 148 patients who underwent a surgical dislocation of the hip. To assess the circumference of the proximal femur, alpha angle and height of asphericity were measured in 14 positions using radial slices of MRA. The hips were assigned to one of four groups depending on the appearance of the head-neck junction on anteroposterior pelvic and lateral crosstable radiographs. Group I (n = 19) was circular on both planes, Group II (n = 19) was aspheric on the crosstable view, Group III (n = 4) was aspheric on the anteroposterior view, and Group IV (n = 13) was aspheric on both views. In all four groups, the highest alpha angle was found in the anterosuperior area of the head-neck junction. Even when conventional radiographs appeared normal, an increased alpha angle was present anterosuperiorly. Without the use of radial slices in MRA, the asphericity would be underestimated in these patients.
Resumo:
The proximal femur is a high-diversity region of the human skeleton, especially at the anterior junction between head and neck, where various bony morphologies have been recognized since mid nineteenth century. Classical literature on this topic is chaotic and contradictory, making almost impossible the comparison of data from different researches. Starting from an extensive bibliographic review, the first standardized method to score these traits has been created. This method allows representing both the anatomical diversity of the region already described in literature and a part of variability not considered before, giving few and univocal definitions and allowing to collect comparable data. The method has been applied to three identified and five archaeological European skeletal collections, with the aim of investigating the distribution of these features by sex, age and side, in different places and time periods. It has also been applied to 3D digital reconstructions of femurs from CT scan files of coxo-femoral joints from fresh cadavers. In addition to the osseous traits described in the standardized method, the presence and frequency of some features known as herniation pits have been scored both on bones and on CT scans. The various osseous traits of the proximal femur are present at similar frequencies in skeletal samples from different countries and different historical periods, even if with clear local differentiation. Some of the features examined show significant trends related to their distribution by gender and age. Some hypotheses are proposed about the etiology of these morphologies and their possible implication with the acquisition of bipedalism in Humans. It is therefore highlighted the possible relation of some of these traits with the development of disorders of the hip joint. Moreover, it is not recommended the use of any of these features as a specific activity-related marker.
Resumo:
Obturator anterior hip dislocation is very rare. Poor results are described in patients with additional large transchondral fractures and treatment of these injuries remains challenging. Appropriate treatment recommendations are missing in the literature. This case report introduces surgical hip dislocation for osteochondral autograft transplantation with graft harvest from the nonweightbearing area of the head-neck junction as a salvage procedure in a large femoral head defect. We report the treatment and outcome of a 48-year-old man who sustained an anterior dislocation of the left hip after a motorcycle accident. After initial closed reduction in the emergency room, imaging analysis revealed a large osteochondral defect of the femoral head within the weightbearing area (10 × 20 mm, depth: 5 mm). The hip was exposed with a surgical hip dislocation using a trochanteric osteotomy. An osteochondral autograft was harvested from a nonweightbearing area of the femoral head and transferred into the defect. The patient was prospectively examined clinically and radiologically. Two years postoperatively, the patient was free of pain and complaints. The function of the injured hip was comparable to that of the contralateral, healthy hip and showed satisfying radiologic results. Surgical hip dislocation with a trochanteric flip osteotomy is a simple, one-step technique that allows full inspection of the hip to treat osteochondral femoral defects by osteochondral transplantation. The presented technique, used as a salvage procedure in a large femoral head defect, yielded good clinical and satisfying radiologic outcomes at the midterm.
Resumo:
OBJECTIVE: The aim of this study was to assess the glycosaminoglycan (GAG) content in hip joint cartilage in mature hips with a history of slipped capital femoral epiphysis (SCFE) using delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). METHODS: 28 young-adult subjects (32 hips) with a mean age of 23.8+/-4.0 years (range: 18.1-30.5 years) who were treated for mild or moderate SCFE in adolescence were included into the study. Hip function and clinical symptoms were evaluated with the Harris hip score (HHS) system at the time of MRI. Plain radiographic evaluation included Tonnis grading, measurement of the minimal joint space width (JSW) and alpha-angle measurement. The alpha-angle values were used to classify three sub-groups: group 1=subjects with normal femoral head-neck offset (alpha-angle <50 degrees ), group 2=subjects with mild offset decrease (alpha-angle 50 degrees -60 degrees ), and group 3=subjects with severe offset decrease (alpha-angle >60 degrees ). RESULTS: There was statistically significant difference noted for the T1(Gd) values, lateral and central, between group 1 and group 3 (p-values=0.038 and 0.041). The T1(Gd) values measured within the lateral portion were slightly lower compared with the T1(Gd) values measured within the central portion that was at a statistically significance level (p-value <0.001). HHS, Tonnis grades and JSW revealed no statistically significant difference. CONCLUSION: By using dGEMRIC in the mid-term follow-up of SCFE we were able to reveal degenerative changes even in the absence of joint space narrowing that seem to be related to the degree of offset pathology. The dGEMRIC technique may be a potential diagnostic modality in the follow-up evaluation of SCFE.
Resumo:
Femoroacetabular impingement due to metaphyseal prominence is associated with the slippage in patients with slipped capital femoral epiphysis (SCFE), but it is unclear whether the changes in femoral metaphysis morphology are associated with range of motion (ROM) changes or type of impingement. We asked whether the femoral head-neck junction morphology influences ROM analysis and type of impingement in addition to the slip angle and the acetabular version. We analyzed in 31 patients with SCFE the relationship between the proximal femoral morphology and limitation in ROM due to impingement based on simulated ROM of preoperative CT data. The ROM was analyzed in relation to degree of slippage, femoral metaphysis morphology, acetabular version, and pathomechanical terms of "impaction" and "inclusion." The ROM in the affected hips was comparable to that in the unaffected hips for mild slippage and decreased for slippage of more than 30 degrees. The limitation correlated with changes in the metaphysic morphology and changed acetabular version. Decreased head-neck offset in hips with slip angles between 30 degrees and 50 degrees had restricted ROM to nearly the same degree as in severe SCFE. Therefore, in addition to the slip angle, the femoral metaphysis morphology should be used as criteria for reconstructive surgery.
Resumo:
BACKGROUND Traditionally arthrotomy has rarely been performed during surgery for slipped capital femoral epiphysis (SCFE). As a result, most pathophysiological information about the articular surfaces was derived clinically and radiographically. Novel insights regarding deformity-induced damage and epiphyseal perfusion became available with surgical hip dislocation. QUESTIONS/PURPOSES We (1) determined the influence of chronicity of prodromal symptoms and severity of SCFE deformity on severity of cartilage damage. (2) In surgically confirmed disconnected epiphyses, we determined the influence of injury and time to surgery on epiphyseal perfusion; and (3) the frequency of new bone at the posterior neck potentially reducing perfusion during epimetaphyseal reduction. METHODS We reviewed 116 patients with 119 SCFE and available records treated between 1996 and 2011. Acetabular cartilage damage was graded as +/++/+++ in 109 of the 119 hips. Epiphyseal perfusion was determined with laser-Doppler flowmetry at capsulotomy and after reduction. Information about bone at the posterior neck was retrieved from operative reports. RESULTS Ninety-seven of 109 hips (89%) had documented cartilage damage; severity was not associated with higher slip angle or chronicity; disconnected epiphyses had less damage. Temporary or definitive cessation of perfusion in disconnected epiphyses increased with time to surgery; posterior bone resection improved the perfusion. In one necrosis, the retinaculum was ruptured; two were in the group with the longest time interval. Posterior bone formation is frequent in disconnected epiphyses, even without prodromal periods. CONCLUSIONS Addressing the cause of cartilage damage (cam impingement) should become an integral part of SCFE surgery. Early surgery for disconnected epiphyses appears to reduce the risk of necrosis. Slip reduction without resection of posterior bone apposition may jeopardize epiphyseal perfusion. LEVEL OF EVIDENCE Level IV, retrospective case series. See Guidelines for Authors for a complete description of levels of evidence.
Resumo:
BACKGROUND In some hips with cam-type femoroacetabular impingement (FAI), we observed a morphology resembling a more subtle form of slipped capital femoral epiphysis (SCFE). Theoretically, the morphology in these hips should differ from hips with a primary cam-type deformity. QUESTIONS/PURPOSES We asked if (1) head-neck offset; (2) epiphyseal angle; and (3) tilt angle differ among hips with a slip-like morphology, idiopathic cam, hips after in situ pinning of SCFE, and normal hips; and (4) what is the prevalence of a slip-like morphology among cam-type hips? METHODS We retrospectively compared the three-dimensional anatomy of hips with a slip-like morphology (29 hips), in situ pinning for SCFE (eight hips), idiopathic cam deformity (171 hips), and 30 normal hips using radial MRI arthrography. Normal hips were derived from 17 asymptomatic volunteers. All other hips were recruited from a series of 277 hips (243 patients) seen at a specialized academic hip center between 2006 and 2010. Forty-one hips with isolated pincer deformity were excluded. Thirty-six of 236 hips had a known cause of cam impingement (secondary cam), including eight hips after in situ pinning of SCFE (postslip group). The 200 hips with a primary cam were separated in hips with a slip-like morphology (combination of positive fovea sign [if the neck axis did not intersect with the fovea capitis] and a tilt angle [between the neck axis and perpendicular to the basis of the epiphysis] exceeding 4°) and hips with an idiopathic cam. We evaluated offset ratio, epiphyseal angle (angle between the neck axis and line connecting the center of the femoral head and the point where the physis meets the articular surface), and tilt angle circumferentially around the femoral head-neck axis. Prevalence of slip-like morphology was determined based on the total of 236 hips with cam deformities. RESULTS Offset ratio was decreased anterosuperiorly in idiopathic cam, slip-like, and postslip (eg, 1 o'clock position with a mean offset ranging from 0.00 to 0.14; p < 0.001 for all groups) compared with normal hips (0.25 ± 0.06 [95% confidence interval, 0.13-0.37]) and increased posteroinferiorly in slip-like (eg, 8 o'clock position, 0.5 ± 0.09 [0.32-0.68]; p < 0.001) and postslip groups (0.55 ± 0.12 [0.32-0.78]; p < 0.001) and did not differ in idiopathic cam (0.32 ± 0.09 [0.15-0.49]; p = 0.323) compared with normal (0.31 ± 0.07 [0.18-0.44]) groups. Epiphyseal angle was increased anterosuperiorly in the slip-like (eg, 1 o'clock position, 70° ± 9° [51°-88°]; p < 0.001) and postslip groups (75° ± 13° [49°-100°]; p = 0.008) and decreased in idiopathic cam (50° ± 8° [35°-65°]; p < 0.001) compared with normal hips (58° ± 8° [43°-74°]). Posteroinferiorly, epiphyseal angle was decreased in slip-like (eg, 8 o'clock position, 54° ± 10° [34°-74°]; p < 0.001) and postslip (44° ± 11° [23°-65°]; p < 0.001) groups and did not differ in idiopathic cam (76° ± 8° [61°-91°]; p = 0.099) compared with normal (73° ± 7° [59°-88°]) groups. Tilt angle increased in slip-like (eg, 2/8 o'clock position, 14° ± 8° [-1° to 30°]; p < 0.001) and postslip hips (29° ± 10° [9°-48°]; p < 0.001) and decreased in hips with idiopathic cam (-7° ± 5° [-17° to 4°]; p < 0.001) compared with normal (-1° ± 5° [-10° to 8°]) hips. The prevalence of a slip-like morphology was 12%. CONCLUSIONS The slip-like morphology is the second most frequent pathomorphology in hips with primary cam deformity. MRI arthrography of the hip allows identifying a slip-like morphology, which resembles hips after in situ pinning of SCFE and distinctly differs from hips with idiopathic cam. These results support previous studies reporting that SCFE might be a risk factor for cam-type FAI.
Resumo:
Radiotherapy (RT) is a risk factor for accelerated carotid artery atherosclerotic disease in subjects with head and neck cancer. However, the risk factors of RT-induced carotid artery remodeling are not established. This study aimed to investigate the effects of RT on carotid and popliteal arteries in subjects with head and neck cancer and to evaluate the relationship between baseline clinical and laboratory features and the progression of RT-induced atherosclerosis. Eleven men (age = 57.9 ± 6.2years) with head and neck cancer who underwent cervical bilateral irradiation were prospectively examined by clinical and laboratory analysis and by carotid and popliteal ultrasound before and after treatment (mean interval between the end of RT and the post-RT assessment = 181 ± 47 days). No studied subject used hypocholesterolemic medications. Significant increases in carotid intima-media thickness (IMT) (0.95 ± 0.08 vs. 0.87 ± 0.05 mm; p < 0.0001) and carotid IMT/diameter ratio (0.138 ± 0.013 vs. 0.129 ± 0.014; p = 0.001) were observed after RT, while no changes in popliteal structural features were detected. In addition, baseline low-density lipoprotein cholesterol levels showed a direct correlation with RT-induced carotid IMT change (r = 0.66; p = 0.027), while no other studied variable exhibited a significant relationship with carotid IMT change. These results indicate that RT-induced atherosclerosis is limited to the irradiated area and also suggest that it may be predicted by low-density lipoprotein cholesterol levels in subjects with head and neck cancer.
Resumo:
To evaluate the correlation between neck circumference and insulin resistance and components of metabolic syndrome in adolescents with different adiposity levels and pubertal stages, as well as to determine the usefulness of neck circumference to predict insulin resistance in adolescents. Cross-sectional study with 388 adolescents of both genders from ten to 19 years old. The adolescents underwent anthropometric and body composition assessment, including neck and waist circumferences, and biochemical evaluation. The pubertal stage was obtained by self-assessment, and the blood pressure, by auscultation. Insulin resistance was evaluated by the Homeostasis Model Assessment-Insulin Resistance. The correlation between two variables was evaluated by partial correlation coefficient adjusted for the percentage of body fat and pubertal stage. The performance of neck circumference to identify insulin resistance was tested by Receiver Operating Characteristic Curve. After the adjustment for percentage body fat and pubertal stage, neck circumference correlated with waist circumference, blood pressure, triglycerides and markers of insulin resistance in both genders. The results showed that the neck circumference is a useful tool for the detection of insulin resistance and changes in the indicators of metabolic syndrome in adolescents. The easiness of application and low cost of this measure may allow its use in Public Health services.
Resumo:
Teeth are often included in the radiation field during head and neck radiotherapy, and recent clinical evidence suggests that dental pulp is negatively affected by the direct effects of radiation, leading to impaired sensitivity of the dental pulp. Therefore, this study aimed to investigate the direct effects of radiation on the microvasculature, innervation, and extracellular matrix of the dental pulp of patients who have undergone head and neck radiotherapy. Twenty-three samples of dental pulp from patients who finished head and neck radiotherapy were analyzed. Samples were histologically processed and stained with hematoxylin-eosin for morphologic evaluation of the microvasculature, innervation, and extracellular matrix. Subsequently, immunohistochemical analysis of proteins related to vascularization (CD34 and smooth muscle actin), innervation (S-100, NCAM/CD56, and neurofilament), and extracellular matrix (vimentin) of the dental pulp was performed. The morphologic study identified preservation of the microvasculature, nerve bundles, and components of the extracellular matrix in all studied samples. The immunohistochemical analysis confirmed the morphologic findings and showed a normal pattern of expression for the studied proteins in all samples. Direct effects of radiotherapy are not able to generate morphologic changes in the microvasculature, innervation, and extracellular matrix components of the dental pulp in head and neck cancer patients.