938 resultados para Familial hyperaldosteronism type II
Resumo:
BACKGROUND Cats are definitive hosts of Toxoplasma gondii and play an essential role in the epidemiology of this parasite. The study aims at clarifying whether cats are able to develop specific antibodies against different clonal types of T. gondii and to determine by serotyping the T. gondii clonal types prevailing in cats as intermediate hosts in Germany. METHODOLOGY To establish a peptide-microarray serotyping test, we identified 24 suitable peptides using serological T. gondii positive (n=21) and negative cat sera (n=52). To determine the clonal type-specific antibody response of cats in Germany, 86 field sera from T. gondii seropositive naturally infected cats were tested. In addition, we analyzed the antibody response in cats experimentally infected with non-canonical T. gondii types (n=7). FINDINGS Positive cat reference sera reacted predominantly with peptides harbouring amino acid sequences specific for the clonal T. gondii type the cats were infected with. When the array was applied to field sera from Germany, 98.8% (85/86) of naturally-infected cats recognized similar peptide patterns as T. gondii type II reference sera and showed the strongest reaction intensities with clonal type II-specific peptides. In addition, naturally infected cats recognized type II-specific peptides significantly more frequently than peptides of other type-specificities. Cats infected with non-canonical types showed the strongest reactivity with peptides presenting amino-acid sequences specific for both, type I and type III. CONCLUSIONS Cats are able to mount a clonal type-specific antibody response against T. gondii. Serotyping revealed for most seropositive field sera patterns resembling those observed after clonal type II-T. gondii infection. This finding is in accord with our previous results on the occurrence of T. gondii clonal types in oocysts shed by cats in Germany.
Resumo:
We present postmortem computed tomography (pmCT) as well as postmortem magnetic resonance (pmMR) imaging findings in a case of type II DeBakey aortic dissection with a complete rupture of the ascending aorta compared to the findings obtained at forensic autopsy. PmCT only allowed a presumptive diagnosis of aortic dissection based on an anterior mediastinal enlargement. However, at pmMR the dissection including the aortic rupture was clearly visible. Visualization was realized in an unenhanced manner without the need for postmortem angiography.
Resumo:
Most pancreatic cancer patients present with inoperable disease or develop metastases after surgery. Conventional therapies are usually ineffective in treating metastatic disease. It is evident that novel therapies remain to be developed. Transforming growth factor beta (TGF-beta) plays a key role in cancer metastasis, signaling through the TGF-beta type I/II receptors (TbetaRI/II). We hypothesized that targeting TbetaRI/II kinase activity with the novel inhibitor LY2109761 would suppress pancreatic cancer metastatic processes. The effect of LY2109761 has been evaluated on soft agar growth, migration, invasion using a fibroblast coculture model, and detachment-induced apoptosis (anoikis) by Annexin V flow cytometric analysis. The efficacy of LY2109761 on tumor growth, survival, and reduction of spontaneous metastasis have been evaluated in an orthotopic murine model of metastatic pancreatic cancer expressing both luciferase and green fluorescence proteins (L3.6pl/GLT). To determine whether pancreatic cancer cells or the cells in the liver microenvironment were involved in LY2109761-mediated reduction of liver metastasis, we used a model of experimental liver metastasis. LY2109761 significantly inhibited the L3.6pl/GLT soft agar growth, suppressed both basal and TGF-beta1-induced cell migration and invasion, and induced anoikis. In vivo, LY2109761, in combination with gemcitabine, significantly reduced the tumor burden, prolonged survival, and reduced spontaneous abdominal metastases. Results from the experimental liver metastasis models indicate an important role for targeting TbetaRI/II kinase activity on tumor and liver microenvironment cells in suppressing liver metastasis. Targeting TbetaRI/II kinase activity on pancreatic cancer cells or the cells of the liver microenvironment represents a novel therapeutic approach to prevent pancreatic cancer metastasis.
Resumo:
Respiratory diseases are a major cause of mortality and morbidity worldwide. Current treatments offer no prospect of cure or disease reversal. Transplantation of pulmonary progenitor cells derived from human embryonic stem cells (hESCs) may provide a novel approach to regenerate endogenous lung cells destroyed by injury and disease. Here, we examine the therapeutic potential of alveolar type II epithelial cells derived from hESCs (hES-ATIICs) in a mouse model of acute lung injury. When transplanted into lungs of mice subjected to bleomycin (BLM)-induced acute lung injury, hES-ATIICs behaved as normal primary ATIICs, differentiating into cells expressing phenotypic markers of alveolar type I epithelial cells. Without experiencing tumorigenic side effects, lung injury was abrogated in mice transplanted with hES-ATIICs, demonstrated by recovery of body weight and arterial blood oxygen saturation, decreased collagen deposition, and increased survival. Therefore, transplantation of hES-ATIICs shows promise as an effective therapeutic to treat acute lung injury.
A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells.
Resumo:
Alveolar epithelial type II (ATII) cells are small, cuboidal cells that constitute approximately 60% of the pulmonary alveolar epithelium. These cells are crucial for repair of the injured alveolus by differentiating into alveolar epithelial type I cells. ATII cells derived from human ES (hES) cells are a promising source of cells that could be used therapeutically to treat distal lung diseases. We have developed a reliable transfection and culture procedure, which facilitates, via genetic selection, the differentiation of hES cells into an essentially pure (>99%) population of ATII cells (hES-ATII). Purity, as well as biological features and morphological characteristics of normal ATII cells, was demonstrated for the hES-ATII cells, including lamellar body formation, expression of surfactant proteins A, B, and C, alpha-1-antitrypsin, and the cystic fibrosis transmembrane conductance receptor, as well as the synthesis and secretion of complement proteins C3 and C5. Collectively, these data document the successful generation of a pure population of ATII cells derived from hES cells, providing a practical source of ATII cells to explore in disease models their potential in the regeneration and repair of the injured alveolus and in the therapeutic treatment of genetic diseases affecting the lung.
Resumo:
For autologous chondrocyte transplantation, articular chondrocytes are harvested from cartilage tissue and expanded in vitro in monolayer culture. We aimed to characterize with a cellular resolution the synthesis of collagen type II (COL2) and collagen type I (COL1) during expansion in order to further understand why these cells lose the potential to form cartilage tissue when re-introduced into a microenvironment that supports chondrogenesis. During expansion for six passages, levels of transcripts encoding COL2 decreased to <0.1%, whereas transcript levels encoding COL1 increased 370-fold as compared to primary chondrocytes. Flow cytometry for intracellular proteins revealed that chondrocytes acquired a COL2/COL1-double positive phenotype during expansion, and the COL2 positive cells were able to enter the cell cycle. While the fraction of COL2 positive cells decreased from 70% to <2% in primary chondrocytes to passage six cells, the fraction of COL1 positive cells increased from <1% to >95%. In parallel to the decrease of the fraction of COL2 positive cells, the cells' potential to form cartilage-like tissue in pellet cultures steadily decreased. Intracellular staining for COL2 enables for characterization of chondrocyte lineage cells in more detail with a cellular resolution, and it may allow predicting the effectiveness of expanded chondrocytes to form cartilage-like tissue.
Resumo:
The sensitivity of Interferon-γ release assays for detection of Mycobacterium tuberculosis (MTB) infection or disease is affected by conditions that depress host immunity (such as HIV). It is critical to determine whether these assays are affected by diabetes and related conditions (i.e. hyperglycemia, chronic hyperglycemia, or being overweight/obese) given that immune impairment is thought to underline susceptibility to tuberculosis (TB) in people with diabetes. This is important for tuberculosis control due to the millions of type 2 diabetes patients at risk for tuberculosis worldwide.^ The objective of this study was to identify host characteristics, including diabetes, that may affect the sensitivity of two commercially available Interferon-γ (IFN-γ) release assays (IGRA), the QuantiFERON®-TB Gold (QFT-G) and the T-SPOT®.TB in active TB patients. We further explored whether IFN-γ secretion in response to MTB antigens (ESAT-6 and CFP-10) is associated with diabetes and its defining characteristics (high blood glucose, high HbA1c, high BMI). To achieve these objectives, the sensitivity of QFT-G and T-SPOT. TB assays were evaluated in newly diagnosed, tuberculosis confirmed (by positive smear for acid fast bacilli and/or positive culture for MTB) adults enrolled at Texas and Mexico study sites between March 2006 and April 2009. Univariate and multivariate models were constructed to identify host characteristics associated with IGRA result and level of IFN-γ secretion.^ QFT-G was positive in 68% of tuberculosis patients. Those with diabetes, chronic hyperglycemia or obesity were more likely to have a positive QFT-G result, and to secrete higher levels of IFN-γ in response to the mycobacterial antigens (p<0.05). Previous history of BCG vaccination was the only other host characteristic associated with QFT-G result, whereby a higher proportion of non-BCG vaccinated persons were QFT-G positive, in comparison to vaccinated persons. In a separate group of patients, the T-SPOT.TB was 94% sensitive, with similar performance in all tuberculosis patients, regardless of host characteristics.^ In summary, we have demonstrated the validity of QFT-G and T-SPOT. TB to support the diagnosis of TB in patients with a range of host characteristics, but most notably in patients with diabetes. We also confirmed that TB patients with diabetes and associated characteristics (chronic hyperglycemia or BMI) secreted higher titers of IFN-γ when stimulated with MTB specific antigens, in comparison to patients without these characteristics. Together, these findings suggest that the mechanism by which diabetes increases risk to TB may not be explained by the inability to secrete IFN-γ, a key cytokine for TB control.^
Resumo:
We investigated cross-sectional associations between intakes of zinc, magnesium, heme- and non heme iron, beta-carotene, vitamin C and vitamin E and inflammation and subclinical atherosclerosis in the Multi-Ethnic Study of Atherosclerosis (MESA). We also investigated prospective associations between those micronutrients and incident MetS, T2D and CVD. Participants between 45-84 years of age at baseline were followed between 2000 and 2007. Dietary intake was assessed at baseline using a 120-item food frequency questionnaire. Multivariable linear regression and Cox proportional hazard regression models were used to evaluate associations of interest. Dietary intakes of non-heme iron and Mg were inversely associated with tHcy concentrations (geometric means across quintiles: 9.11, 8.86, 8.74, 8.71, and 8.50 µmol/L for non-heme iron, and 9.20, 9.00, 8.65, 8.76, and 8.33 µmol/L for Mg; ptrends <0.001). Mg intake was inversely associated with high CC-IMT; odds ratio (95% CI) for extreme quintiles 0.76 (0.58, 1.01), ptrend: 0.002. Dietary Zn and heme-iron were positively associated with CRP (geometric means: 1.73, 1.75, 1.78, 1.88, and 1.96 mg/L for Zn and 1.72, 1.76, 1.83, 1.86, and 1.94 mg/L for heme-iron). In the prospective analysis, dietary vitamin E intake was inversely associated with incident MetS and with incident CVD (HR [CI] for extreme quintiles - MetS: 0.78 [0.62-0.97] ptrend=0.01; CVD: 0.69 [0.46-1.03]; ptrend =0.04). Intake of heme-iron from red meat and Zn from red meat, but not from other sources, were each positively associated with risk of CVD (HR [CI] - heme-iron from red meat: 1.65 [1.10-2.47] ptrend = 0.01; Zn from red meat: 1.51 [1.02 - 2.24] ptrend =0.01) and MetS (HR [CI] - heme-iron from red meat: 1.25 [0.99-1.56] ptrend =0.03; Zn from red meat: 1.29 [1.03-1.61]; ptrend = 0.04). All associations evaluated were similar across different strata of gender, race-ethnicity and alcohol intake. Most of the micronutrients investigated were not associated with the outcomes of interest in this multi-ethnic cohort. These observations do not provide consistent support for the hypothesized association of individual nutrients with inflammatory markers, MetS, T2D, or CVD. However, nutrients consumed in red meat, or consumption of red meat as a whole, may increase risk of MetS and CVD.^
Resumo:
Objective: My study aimed at determining the association between obesity and diabetes prevalence in South Asian Indian immigrants in Houston, Texas. To also compare the prevalence odds of diabetes given obesity, using WHO-BMI criteria and recommended Asian ethnic-specific BMI criteria for obesity, as well as using WHO-standard waist circumference criteria and ethnic-specific criteria for abdominal obesity, across gender and age, in this population. ^ Methods: My study was a secondary data analysis based on a cross-sectional study carried out on adult South Asian Indians who attended a local community health fair in Houston, in 2007. They recruited 213 voluntary, eligible, South Asian Indian participants aged between 18 to 79 years. Self reported history of Diabetes was obtained and height, weight, waist and hip circumference were measured. I classified BMI based on WHO-standard and ethnic-specific criteria, according to gender and age groups of 18–35 years, 36–64 years and 65 years and over. Waist circumference was also classified based on WHO-standard NCEP criteria and currently recommended ethnic-specific IDF criteria and analysis was done stratifying by gender and age groups. ^ Results: The prevalence of diabetes in this population was 14.6%, significantly higher in older age groups (25.8%) and males (19.2%). The prevalence of DM was statistically similar in individuals who were overweight/obese compared to those not overweight/obese, however in overweight/obese individuals, there was a statistically significant difference in the prevalence of DM between WHO and ethnic-specific criteria for both BMI and waist circumference. In older adults and in males, ethnic-specific criteria identified significantly more as overweight/obese compared to WHO-standard criteria. ^ Conclusions: Ethnic-specific criteria for both BMI and waist circumference give a better estimate for obesity in this South Asian Indian population. Diabetes is highly prevalent in migrant South Asian Indians even at low BMI or waist circumference levels and significantly more in males and older age groups, hence adequate awareness should be created for early prevention and intervention.^
Resumo:
This thesis presents an analysis of data from Molecular Epidemiology of Type II Diabetes Mellitus in Mexican Americans. The study included 294 families. Among the participating families were 500 Mexican American females aged 19 to 86 who provided information on characteristics such as height, weight, and a variety of biochemical indicators. The research questions for this thesis are: (1) How strong is the association between indicators of the metabolic syndrome in study participants and their family histories of type II diabetes; and (2) How is an individual's family history of type II diabetes, age and socioeconomic status associated with the metabolic syndrome? In this thesis education status of the participants is used as an indicator of socioeconomic status. Answers to these questions are provided through the analysis of women's responses to written questionnaires and biochemical data. ^
Resumo:
With the population of the world aging, the prominence of diseases such as Type II Diabetes (T2D) and Alzheimer’s disease (AD) are on the rise. In addition, patients with T2D have an increased risk of developing AD compared to age-matched individuals, and the number of AD patients with T2D is higher than among aged-matched non-AD patients. AD is a chronic and progressive dementia characterized by amyloid-beta (Aβ) plaques, neurofibrillary tangles (NFTs), neuronal loss, brain inflammation, and cognitive impairment. T2D involves the dysfunctional use of pancreatic insulin by the body resulting in insulin resistance, hyperglycemia, hyperinsulinemia, pancreatic beta cell (β-cell) death, and other complications. T2D and AD are considered protein misfolding disorders (PMDs). PMDs are characterized by the presence of misfolded protein aggregates, such as in T2D pancreas (islet amyloid polypeptide - IAPP) and in AD brain (amyloid– Aβ) of affected individuals. The misfolding and accumulation of these proteins follows a seeding-nucleation model where misfolded soluble oligomers act as nuclei to propagate misfolding by recruiting other native proteins. Cross-seeding occurs when oligomers composed by one protein seed the aggregation of a different protein. Our hypothesis is that the pathological interactions between T2D and AD may in part occur through cross-seeding of protein misfolding. To test this hypothesis, we examined how each respective aggregate (Aβ or IAPP) affects the disparate disease pathology through in vitro and in vivo studies. Assaying Aβ aggregates influence on T2D pathology, IAPP+/+/APPSwe+/- double transgenic (DTg) mice exhibited exacerbated T2D-like pathology as seen in elevated hyperglycemia compared to controls; in addition, IAPP levels in the pancreas are highest compared to controls. Moreover, IAPP+/+/APPSwe+/- animals demonstrate abundant plaque formation and greater plaque density in cortical and hippocampal areas in comparison to controls. Indeed, IAPP+/+/APPSwe+/- exhibit a colocalization of both misfolded proteins in cerebral plaques suggesting IAPP may directly interact with Aβ and aggravate AD pathology. In conclusion, these studies suggest that cross-seeding between IAPP and Aβ may occur, and that these protein aggregates exacerbate and accelerate disease pathology, respectively. Further mechanistic studies are necessary to determine how these two proteins interact and aggravate both pancreatic and brain pathologies.
Resumo:
The photoluminescence efficiency of GaAsSb-capped InAs/GaAs type II quantum dots (QDs) can be greatly enhanced by rapid thermal annealing while preserving long radiative lifetimes which are ∼20 times larger than in standard GaAs-capped InAs/GaAs QDs. Despite the reduced electron-hole wavefunction overlap, the type-II samples are more efficient than the type-I counterparts in terms of luminescence, showing a great potential for device applications. Strain-driven In-Ga intermixing during annealing is found to modify the QD shape and composition, while As-Sb exchange is inhibited, allowing to keep the type-II structure. Sb is only redistributed within the capping layer giving rise to a more homogeneous composition.