775 resultados para Fallow Deer
Resumo:
Five cases of fatal babesiosis in free-ranging chamois (Rupicapra r. rupicapra) attributed to infections with Babesia capreoli were recently recorded in two regions of the Swiss Alps. To investigate the ecologic factors that possibly lead to those fatal B. capreoli infections in chamois, blood, ticks, and demographic data of 46 roe deer (Capreolus c. capreolus), 48 chamois, and nine red deer (Cervus elaphus) were collected in 2006 and 2007 in both affected regions. Whereas no parasitic inclusions were found by microscopical examination of blood smears, B. capreoli was identified by polymerase chain reaction/sequencing in blood of 12 roe deer (26%, 95% confidence interval [CI]: 14.3-41.1), one chamois (2%, CI: 0-6.1), and one red deer (11%, CI: 0.3-48.2). Prevalence of B. capreoli was significantly higher in roe deer compared with chamois (P<0.001). All 214 ticks were identified as Ixodes ricinus, and significantly more roe deer (63%, CI: 47.5-76.8) were infested compared with chamois (21%, CI: 10.5-35.0, P<0.001). Overall, prevalences of both tick infestation and Babesia infection increased significantly (P<0.001) with decreasing altitude, and Babesia-positive samples were detected significantly more often from animals with tick infestation compared with animals without ticks (P = 0.040). Our results indicate that roe deer may play an important reservoir role for B. capreoli. It is hypothesized that the expansion of the presumed vector I. ricinus to higher elevations and its increased abundance in overlapping habitats of roe deer and chamois may favor the spillover of B. capreoli from roe deer to chamois.
Resumo:
SUMMARY The deer ked (Lipoptena cervi) is a haematophagous ectoparasite of cervids that harbours haemotrophic Bartonella. A prerequisite for the vector competence of the deer ked is the vertical transmission of the pathogen from the mother to its progeny and transstadial transmission from pupa to winged adult. We screened 1154 pupae and 59 pools of winged adult deer keds from different areas in Finland for Bartonella DNA using PCR. Altogether 13 pupa samples and one winged adult deer ked were positive for the presence of Bartonella DNA. The amplified sequences were closely related to either B. schoenbuchensis or B. bovis. The same lineages were identified in eight blood samples collected from free-ranging moose. This is the first demonstration of Bartonella spp. DNA in a winged adult deer ked and, thus, evidence for potential transstadial transmission of Bartonella spp. in the species.
Resumo:
We present the first reference ranges for hematology (n = 35 animals), serum biochemistry (n = 62), and serum protein electrophoresis (n = 32) in physically restrained free-ranging roe deer (Capreolus capreolus). Animals were captured in box traps and physically restrained for blood sampling during the winter in Sweden, 2011-13. No clinically significant sex or age differences were found.
Resumo:
To estimate the prevalence of bovine tuberculosis in the Alpine region, we studied the epidemiology of Mycobacterium caprae in wildlife during the 2009-2012 hunting seasons. Free-ranging red deer (Cervus elaphus) were a maintenance host in a hot-spot area, mainly located in Austria.
Resumo:
In irrigated areas where cover crop establishment can be assured, consequent soil or nutrient conservation could increase sustainability of cropping systems. Replacing bare fallow with cover crops may increase sustainability by enhancing soil aggregate stability, water retention capacity or controlling nitrate leaching. Nevertheless, adoption of cover crops increase evapotranspiration and reduce water percolation beyond the root systems; therefore, it could lead to salt accumulation in the upper soil layers. This study was conducted during four years to determine the effect of replacing bare fallow by a cover crop on soil salt accumulation and salt leaching in an irrigated maize production system.
Resumo:
Nitrate leaching decreases crop available N and increases water contamination. Replacing fallow by cover crops (CC) is an alternative to reduce nitrate contamination, because it reduces overall drainage and soil mineral N accumulation. A study of the soil N and nitrate leaching was conducted during 5 years in a semi-arid irrigated agricultural area of Central Spain. Three treatments were studied during the intercropping period of maize (Zea mays L.): barley (Hordeum vulgare L.), vetch (Vicia villosa L.), and fallow. Cover crops, sown in October, were killed by glyphosate application in March, allowing direct seeding of maize in April. All treatments were irrigated and fertilised following the same procedure. Soil water content was measured using capacity probes. Soil Nmin accumulation was determined along the soil profile before sowing and after harvesting maize. Soil analysis was conducted at six depths every 0.20m in each plot in samples from 0 to 1.2-m depth. The mechanistic water balance model WAVE was applied in order to calculate drainage and plant growth of the different treatments, and apply them to the N balance. We evaluated the water balance of this model using the daily soil water content measurements of this field trial. A new Matlab version of the model was evaluated as well. In this new version improvements were made in the solute transport module and crop module. In addition, this new version is more compatible with external modules for data processing, inverse calibration and uncertainty analysis than the previous Fortran version. The model showed that drainage during the irrigated period was minimized in all treatments, because irrigation water was adjusted to crop needs, leading to nitrate accumulation on the upper layers after maize harvest. Then, during the intercrop period, most of the nitrate leaching occurred. Cover crops usually led to a shorter drainage period, lower drainage water amount and lower nitrate leaching than the treatment with fallow. These effects resulted in larger nitrate accumulation in the upper layers of the soil after CC treatments.
Resumo:
The relationship between hantaviruses and their reservoir hosts is not well understood. We successfully passaged a mouse-adapted strain of Sin Nombre virus from deer mice (Peromyscus maniculatus) by i.m. inoculation of 4- to 6-wk-old deer mouse pups. After inoculation with 5 ID50, antibodies to the nucleocapsid (N) antigen first became detectable at 14 d whereas neutralizing antibodies were detectable by 7 d. Viral N antigen first began to appear in heart, lung, liver, spleen, and/or kidney by 7 d, whereas viral RNA was present in those tissues as well as in thymus, salivary gland, intestine, white fat, and brown fat. By 14 d nearly all tissues examined displayed both viral RNA and N antigen. We noted no consistent histopathologic changes associated with infection, even when RNA load was high. Viral RNA titers peaked on 21 d in most tissues, then began to decline by 28 d. Infection persisted for at least 90 d. The RNA titers were highest in heart, lung, and brown fat. Deer mice can be experimentally infected with Sin Nombre virus, which now allows provocative examination of the virus-host relationship. The prominent involvement of heart, lung, and brown fat suggests that these sites may be important tissues for early virus replication or for maintenance of the virus in nature.
Resumo:
A human-derived strain of the agent of human granulocytic ehrlichiosis, a recently described emerging rickettsial disease, has been established by serial blood passage in mouse hosts. Larval deer ticks acquired infection by feeding upon such mice and efficiently transmitted the ehrlichiae after molting to nymphs, thereby demonstrating vector competence. The agent was detected by demonstrating Feulgen-positive inclusions in the salivary glands of the experimentally infected ticks and from field-derived adult deer ticks. White-footed mice from a field site infected laboratory-reared ticks with the agent of human granulocytic ehrlichiosis, suggesting that these rodents serve as reservoirs for ehrlichiae as well as for Lyme disease spirochetes and the piroplasm that causes human babesiosis. About 10% of host-seeking deer ticks were infected with ehrlichiae, and of these, 20% also contained spirochetes. Cotransmission of diverse pathogens by the aggressively human-biting deer tick may have a unique impact on public health in certain endemic sites.
Resumo:
The population of white-tailed deer (Odocoileus virginianus) occupying Mammoth Cave National Park, Kentucky is unknown. The population is uncontrolled, unmanaged, and suspected to be high. When uncontrolled, white-tailed deer tend to overpopulate and inflict negative impacts to vegetation through increased herbivory. The goal of this project is to demonstrate that the status of white-tailed deer at Mammoth Cave merits a policy formulation, and to provide suggestions as to what such a policy should contain. Three similar national parks have previously developed policies to manage white-tailed deer. These policies are analyzed, and common elements are identified that can transpose into a comparable policy at Mammoth Cave. Recommendations for a white-tailed deer management policy at Mammoth Cave National Park are given.
Resumo:
n.s. no.11(1982)
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Colorado Division of Highways, Denver
Resumo:
"U.S. Geological Survey, U.S. Department of the Interior"--P. [1].