928 resultados para Eye-movement Desensitization
Resumo:
Estudos sobre a sintática da comunicação têm revelado que tanto a repertório verbal como a não-verbal produzem modificações significativas na interação social, e, portanto, no desenvolvimento humano. A fala, por exemplo, tem sido vista como uma modalidade comunicativa socialmente exigida para a construção de relações nos diferentes contextos e culturas. Entretanto, essa modalidade nem sempre é o recurso mais disponível principalmente para aqueles que apresentam alterações no seu desenvolvimento. Diante disso, é comum que a pessoa com deficiência tente buscar formas compensatórias para expressar seus desejos, pensamentos e frustrações, por meio das expressões faciais, do movimento ocular e/ou de piscada e de movimentos intencionais como o apontar. Nesse sentido, os recursos e estratégias de comunicação alternativa tem sidosão utilizados como ferramentas úteis para que o indivíduo possa alcançar maior participação social nos diversos contextos em que se apresenta. No entanto, a literatura tem destacado que, no ambiente escolar, os entraves de comunicação entre o professor e o aluno com deficiência podem acarretar prejuízos ao processo de ensino-aprendizagem. Por isso, esta pesquisa teve como objetivo analisar a interação professor-aluno com paralisia cerebral antes e após a introdução dessas ferramentas. Para tanto, realizou-se estudo de caráter qualitativo, do tipo estudo de caso com pesquisa intervenção. As etapas principais deste estudo foram: filmagens dos episódios interativos sem os recursos de comunicação alternativa, capacitação dos professores na escola e filmagem dos episódios interativos com os recursos de comunicação alternativa. Os dados foram analisados de forma qualitativa, considerando as quatro dimensões do modelo bioecológico de desenvolvimento humano proposto por Bronfenbrenner (1998): Processo, Pessoa, Contexto e Tempo. Dentre os resultados desta pesquisa destacam-se: maior engajamento mútuo no desenvolvimento dos episódios, com aumento na extensão de elos comunicativos; melhor percepção da professora acerca das habilidades de comunicação da aluna e tendência desta educadora para a utilização dessas ferramentas com finalidade de ensino. A partir disso, concluiu-se que esses recursos dinamizaram as interações entre a professora e a aluna com paralisia cerebral. Contudo, a implementação de tais recursos no cotidiano escolar requer a interdependência positiva de diversos fatores, dentre os quais os atributos pessoais desenvolvimentalmente geradores e maior base de tempo regular com o uso dessas ferramentas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC
Resumo:
The saccadic paradigm has been used to investigate specific cortical networks involving visuospatial attention. We examined whether asymmetry in theta and beta band differentiates the role of the hemispheres during the execution of two different prosacadic conditions: a fixed condition, where the stimulus was presented at the same location; and a random condition, where the stimulus was unpredictable. Twelve healthy volunteers (3 male; mean age: 26.25) performed the task while their brain activity pattern was recorded using quantitative electroencephalography. We did not find any significant difference for beta, slow- and fast-alpha frequencies for the pairs of electrodes analyzed. The results for theta band showed a superiority of the left hemisphere in the frontal region when responding to the random condition on the right, which is related to the planning and selection of responses, and also a greater activation of the right hemisphere during the random condition, in the occipital region, related to the identification and recognition of patterns. These results indicate that asymmetries in the premotor area and the occipital cortex differentiate memory- and stimulus-driven tasks. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Uniform conduction slowing has been considered a characteristic of inherited demyelinating neuropathies. We present an 18-year-old girl, born from first cousins, that presented a late motor and psychological development, cerebellar ataxia, facial diplegia, abnormal eye movement, scoliosis, and corpus callosum agenesis, whose compound muscle action potentials were slowed and dispersed. A mutation was found on KCC3 gene, confirming Andermann syndrome, a disease that must be included in the differential diagnosis of inherited neuropathies with non-uniform conduction slowing.
Resumo:
This study aimed to evaluate the sleep quality and impact of thoracentesis on sleep in patients with a large pleural effusion. Patients with large unilateral pleural effusion were evaluated by the Pittsburgh Sleep Quality Index (PSQI) questionnaire and dyspnea Borg scale. Full polysomnography (PSG) was performed on the night before and 36 h after thoracentesis. We studied 19 patients, 11 males and 8 females, age 55 +/- 18 years and body mass index of 26 +/- 5 kg/m(2). The baseline sleep quality was poor (PSQI = 9.1 +/- 3.5). Thoracentesis removed 1.624 +/- 796 mL of pleural fluid and resulted in a significant decrease in dyspnea Borg scale (2.3 +/- 2.1 vs. 0.8 +/- 0.9, p < 0.001). The PSG before and after thoracentesis showed no significant change in apnea-hypopnea index and sleep time with oxygen saturation < 90%. There was a significant improvement in sleep efficiency (76% vs. 81%, p = 0.006), decrease percent sleep stage 1 (16% vs. 14%, p = 0.002), and a trend improvement in total sleep time (344 +/- 92 vs. 380 +/- 69 min, p = 0.056) and percentage of rapid eye movement sleep (15% vs. 20%, p = 0.053). No significant changes occurred in six patients that performed two consecutive PSG before thoracentesis. The improvement in sleep quality was not associated with the volume of pleural fluid withdrawn or changes in dyspnea. Patients with large pleural effusion have poor subjective and objective sleep quality that improves after thoracentesis.
Resumo:
The main aim of this thesis is strongly interdisciplinary: it involves and presumes a knowledge on Neurophysiology, to understand the mechanisms that undergo the studied phenomena, a knowledge and experience on Electronics, necessary during the hardware experimental set-up to acquire neuronal data, on Informatics and programming to write the code necessary to control the behaviours of the subjects during experiments and the visual presentation of stimuli. At last, neuronal and statistical models should be well known to help in interpreting data. The project started with an accurate bibliographic research: until now the mechanism of perception of heading (or direction of motion) are still poorly known. The main interest is to understand how the integration of visual information relative to our motion with eye position information happens. To investigate the cortical response to visual stimuli in motion and the integration with eye position, we decided to study an animal model, using Optic Flow expansion and contraction as visual stimuli. In the first chapter of the thesis, the basic aims of the research project are presented, together with the reasons why it’s interesting and important to study perception of motion. Moreover, this chapter describes the methods my research group thought to be more adequate to contribute to scientific community and underlines my personal contribute to the project. The second chapter presents an overview on useful knowledge to follow the main part of the thesis: it starts with a brief introduction on central nervous system, on cortical functions, then it presents more deeply associations areas, which are the main target of our study. Furthermore, it tries to explain why studies on animal models are necessary to understand mechanism at a cellular level, that could not be addressed on any other way. In the second part of the chapter, basics on electrophysiology and cellular communication are presented, together with traditional neuronal data analysis methods. The third chapter is intended to be a helpful resource for future works in the laboratory: it presents the hardware used for experimental sessions, how to control animal behaviour during the experiments by means of C routines and a software, and how to present visual stimuli on a screen. The forth chapter is the main core of the research project and the thesis. In the methods, experimental paradigms, visual stimuli and data analysis are presented. In the results, cellular response of area PEc to visual stimuli in motion combined with different eye positions are shown. In brief, this study led to the identification of different cellular behaviour in relation to focus of expansion (the direction of motion given by the optic flow pattern) and eye position. The originality and importance of the results are pointed out in the conclusions: this is the first study aimed to investigate perception of motion in this particular cortical area. In the last paragraph, a neuronal network model is presented: the aim is simulating cellular pre-saccadic and post-saccadic response of neuron in area PEc, during eye movement tasks. The same data presented in chapter four, are further analysed in chapter fifth. The analysis started from the observation of the neuronal responses during 1s time period in which the visual stimulation was the same. It was clear that cells activities showed oscillations in time, that had been neglected by the previous analysis based on mean firing frequency. Results distinguished two cellular behaviour by their response characteristics: some neurons showed oscillations that changed depending on eye and optic flow position, while others kept the same oscillations characteristics independent of the stimulus. The last chapter discusses the results of the research project, comments the originality and interdisciplinary of the study and proposes some future developments.
Resumo:
Poco più di dieci anni fa, nel 1998, è stata scoperta l’ipocretina (ovvero orexina), un neuropeptide ipotalamico fondamentale nella regolazione del ciclo sonno-veglia, dell’appetito e della locomozione (de Lecea 1998; Sakurai, 1998; Willie, 2001). La dimostrazione, pochi mesi dopo, di bassi livelli di ipocretina circolanti nel liquido cefalo-rachidiano di pazienti affetti da narcolessia con cataplessia (Mignot 2002) ha definitivamente rilanciato lo studio di questa rara malattia del Sistema Nervoso Centrale, e le pubblicazioni a riguardo si sono moltiplicate. In realtà le prime descrizioni della narcolessia risalgono alla fine del XIX secolo (Westphal 1877; Gélineau 1880) e da allora la ricerca clinica è stata volta soprattutto a cercare di definire il più accuratamente possibile il fenotipo del paziente narcolettico. Accanto all’alterazione del meccanismo di sonno e di veglia, e dell’alternanza tra le fasi di sonno REM (Rapid Eye Movement) e di sonno non REM, sui quali l’ipocretina agisce come un interruttore che stimola la veglia e inibisce la fase REM, sono apparse evidenti anche alterazioni del peso e del metabolismo glucidico, dello sviluppo sessuale e del metabolismo energetico (Willie 2001). I pazienti narcolettici presentano infatti, in media, un indice di massa corporea aumentato (Dauvilliers 2007), la tendenza a sviluppare diabete mellito di tipo II (Honda 1986), un’aumentata prevalenza di pubertà precoce (Plazzi 2006) e alterazioni del metabolismo energetico, rispetto alla popolazione generale (Dauvilliers 2007). L’idea che, quindi, la narcolessia abbia delle caratteristiche fenotipiche intrinseche altre, rispetto a quelle più eclatanti che riguardano il sonno, si è fatta strada nel corso del tempo; la scoperta della ipocretina, e della fitta rete di proiezioni dei neuroni ipocretinergici, diffuse in tutto l’encefalo fino al ponte e al bulbo, ha offerto poi il substrato neuro-anatomico a questa idea. Tuttavia molta strada separa l’intuizione di un possibile legame dall’individuazione dei reali meccanismi patogenetici che rendano conto dell’ampio spettro di manifestazioni cliniche che si osserva associato alla narcolessia. Lo studio svolto in questi tre anni si colloca in questa scia, e si è proposto di esplorare il fenotipo narcolettico rispetto alle funzioni dell’asse ipotalamo-ipofisi-periferia, attraverso un protocollo pensato in stretta collaborazione fra il Dipartimento di Scienze Neurologiche di Bologna e l’Unità Operativa di Endocrinologia e di Malattie del Metabolismo dell’Ospedale Sant’Orsola-Malpighi di Bologna. L’ipotalamo è infatti una ghiandola complessa e l’approccio multidisciplinare è sembrato essere quello più adatto. I risultati ottenuti, e che qui vengono presentati, hanno confermato le aspettative di poter dare ulteriori contributi alla caratterizzazione della malattia; un altro aspetto non trascurabile, e che però verrà qui omesso, sono le ricadute cliniche in termini di inquadramento e di terapia precoce di quelle alterazioni, non strettamente ipnologiche, e però associate alla narcolessia.
Resumo:
Objectives. Blood pressure (BP) physiologically has higher and lower values during the active and rest period, respectively. Subjects failing to show the appropriate BP decrease (10-20%) on passing form diurnal activity to nocturnal rest and sleep have increased risk of target organ damage at the cardiac, vascular and cerebrovascular levels. Hypocretin (HCRT) releasing neurons, mainly located in the lateral hypothalamus, project widely to the central nervous system. Thus HCRT neurons are involved in several autonomic functions, including BP regulation. HCRT neurons also play a key role in wake-sleep cycle regulation, the lack of which becomes evident in HCRT-deficient narcoleptic patients. I investigated whether chronic lack of HCRT signaling alters BP during sleep in mouse models of narcolepsy. Methods. The main study was performed on HCRT-ataxin3 transgenic mice (TG) with selective post-natal ablation of HCRT neurons, HCRT gene knockout mice (KO) with preserved HCRT neurons, and Wild-Type control mice (WT) with identical genetic background. Experiments where replicated on TG and WT mice with hybrid genetic background (hTG and hWT, respectively). Mice were implanted with a telemetric pressure transducer (TA11PA-C10, DSI) and electrodes for discriminating wakefulness (W), rapid-eye-movement sleep (REMS) and non-REMS (NREMS). Signals were recorded for 3 days. Mean BP values were computed in each wake-sleep state and analyzed by ANOVA and t-test with significance at p<0.05. Results. The decrease in BP between either NREMS or REMS and W was significantly blunted in TG and KO with respect to WT as well as in hTG with respect to hWT. Conclusions. Independently from the genetic background, chronic HCRT deficiency leads to a decreased BP difference between W and sleep potentially adverse in narcoleptic subjects. These data suggest that HCRT play an important role in the sleep-dependent cardiovascular control.
Resumo:
Background/Objectives: Sleep has been shown to enhance creativity, but the reason for this enhancement is not entirely known. There are several different physiological states associated with sleep. In addition to rapid (REM) and non-rapid eye movement (NREM) sleep, NREM sleep can be broken down into Stages (1-4) that are characterized by the degree of EEG slow wave activity. In addition, during NREM sleep there are transient but cyclic alternating patterns (CAP) of EEG activity and these CAPs can also be divided into three subtypes (A1-A3) according to speed of the EEG waves. Differences in CAP ratios have been previously linked to cognitive performances. The purpose of this study was to learn the relationship CAP activity during sleep and creativity. Methods: The participants were 8 healthy young adults (4 women), who underwent 3 consecutive nights of polysomnographic recording and took the Abbreviated Torrance Test for Adults (ATTA) on the 2 and 3rd mornings after the recordings. Results: There were positive correlations between Stage 1 of NREM sleep and some measures of creativity such as fluency (R= .797; p=.029) and flexibility ( R=.43; p=.002), between Stage 4 of Non-REM sleep and originality (R= .779; p=.034) and a global measure of figural creativity (R= .758; p=.040). There was also a negative correlation between REM sleep and originality (R= -.827; p= .042) . During NREM sleep the CAP rate, which in young people is primarily the A1 subtype, also correlated with originality (R= .765; p =.038). Conclusions: NREM sleep is associated with low levels of cortical arousal and low cortical arousal may enhance the ability of people to access to the remote associations that are critical for creative innovations. In addition, A1 CAP activity reflects frontal activity and the frontal lobes are important for divergent thinking, also a critical aspect of creativity.
Resumo:
Hypocretin 1 and 2 (HCRT, also called Orexin A and B) are neuropeptides released by neurons in the lateral hypothalamus. HCRT neurons widely project to the entire neuroaxis. HCRT neurons have been reported to participate in various hypothalamic physiological processes including cardiovascular functions, wake-sleep cycle, and they may also influence metabolic rate and the regulation of body temperature. HCRT neurons are lost in narcolepsy, a rare neurological disorder, characterized by excessive daytime sleepiness, cataplexy, sleep fragmentation and occurrence of sleep-onset rapid-eye-movement episodes. We investigated whether HCRT neurons mediate the sleep-dependent cardiovascular adaptations to changes in ambient temperature (Ta). HCRT-ataxin3 transgenic mice with genetic ablation of HCRT neurons (n = 11) and wild-type controls (n = 12) were instrumented with electrodes for sleep scoring and a telemetric blood pressure (BP) transducer (DSI, Inc.). Simultaneous sleep and BP recordings were performed on mice undisturbed and freely-behaving at 20 °C, 25 °C, and 30 °C for 48 hours at each Ta. Analysis of variance of BP indicated a significance of the main effects of wake-sleep state and Ta, their interaction effect, and the wake-sleep state x mouse strain interaction effect. BP increased with decreasing Ta. This effect of Ta on BP was significantly lower in rapid-eye-movement sleep (REMS) than either in non-rapid-eye-movement sleep (NREMS) or wakefulness regardless of the mouse strain. BP was higher in wakefulness than either in NREMS or REMS. This effect of sleep on BP was significantly reduced in mice lacking HCRT neurons at each Ta, particularly during REMS. These data suggest that HCRT neurons play a critical role in mediating the effects of sleep but not those of Ta on BP in mice. HCRT neurons may thus be part of the central neural pathways which mediate the phenomenon of blood pressure dipping on passing from wakefulness to sleep.
Resumo:
The arousal scoring in Obstructive Sleep Apnea Syndrome (OSAS) is important to clarify the impact of the disease on sleep but the currently applied American Academy of Sleep Medicine (AASM) definition may underestimate the subtle alterations of sleep. The aims of the present study were to evaluate the impact of respiratory events on cortical and autonomic arousal response and to quantify the additional value of cyclic alternating pattern (CAP) and pulse wave amplitude (PWA) for a more accurate detection of respiratory events and sleep alterations in OSAS patients. A retrospective revision of 19 polysomnographic recordings of OSAS patients was carried out. Analysis was focused on quantification of apneas (AP), hypopneas (H) and flow limitation (FL) events, and on investigation of cerebral and autonomic activity. Only 41.1% of FL events analyzed in non rapid eye movement met the AASM rules for the definition of respiratory event-related arousal (RERA), while 75.5% of FL events ended with a CAP A phase. The dual response (EEG-PWA) was the most frequent response for all subtypes of respiratory event with a progressive reduction from AP to H and FL. 87.7% of respiratory events with EEG activation showed also a PWA drop and 53,4% of the respiratory events without EEG activation presented a PWA drop. The relationship between the respiratory events and the arousal response is more complex than that suggested by the international classification. In the estimation of the response to respiratory events, the CAP scoring and PWA analysis can offer more extensive information compared to the AASM rules. Our data confirm also that the application of PWA scoring improves the detection of respiratory events and could reduce the underestimation of OSAS severity compared to AASM arousal.
Resumo:
Cerebral achromatopsia is a rare disorder of colour vision caused by bilateral damage to the occipito-temporal cortex. Patients with cerebral achromatopsia are commonly said to suffer due to their disturbed colour sense. Here, we report the case of a patient with cerebral achromatopsia who was initially unaware of his deficit, although three experiments with eye movement recordings demonstrated his severe inability to use colour information in everyday tasks. During two months, the evolution of his colour vision deficit was followed with repeated standardized colour vision tests and eye movement recordings. While his performance continuously improved, he became more and more aware of the deficit. Only after colour vision had almost normalized, his subjective colour sensation was inconspicuous again. The simultaneous occurrence of achromatopsia and the corresponding anosognosia and their parallel recovery suggest that both deficits were due to dysfunction of the same brain region. Consequently, the subjective experience of colour loss in achromatopsia may depend on the residual function of the damaged colour centre.
Resumo:
Narcolepsy is characterized by excessive daytime sleepiness and rapid eye movement (REM) sleep abnormalities, including cataplexy. The aim of this study was to assess REM sleep pressure and homeostasis in narcolepsy. Six patients with narcolepsy and six healthy controls underwent a REM sleep deprivation protocol, including one habituation, one baseline, two deprivation nights (D1, D2) and one recovery night. Multiple sleep latency tests (MSLTs) were performed during the day after baseline and after D2. During D1 and D2 REM sleep was prevented by awakening the subjects at the first polysomnographic signs of REM sleep for 2 min. Mean sleep latency and number of sleep-onset REM periods (SOREMs) were determined on all MSLT. More interventions were required to prevent REM sleep in narcoleptics compared with control subjects during D1 (57 ± 16 versus 24 ± 10) and D2 (87 ± 22 versus 35 ± 8, P = 0.004). Interventions increased from D1 to D2 by 46% in controls and by 53% in narcoleptics (P < 0.03). Selective REM sleep deprivation was successful in both controls (mean reduction of REM to 6% of baseline) and narcoleptics (11%). Both groups had a reduction of total sleep time during the deprivation nights (P = 0.03). Neither group had REM sleep rebound in the recovery night. Narcoleptics had, however, an increase in the number of SOREMs on MSLT (P = 0.005). There was no increase in the number of cataplexies after selective REM sleep deprivation. We conclude that: (i) REM sleep pressure is higher in narcoleptics; (ii) REM sleep homeostasis is similar in narcoleptics and controls; (iii) in narcoleptics selective REM sleep deprivation may have an effect on sleep propensity but not on cataplexy.