971 resultados para Extracellular Ca2


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origin of intracellular Ca2+ concentration ([Ca2+](i)) transients stimulated by nicotinic ( nAChR) and muscarinic ( mAChR) receptor activation was investigated in fura-2-loaded neonatal rat intracardiac neurons. ACh evoked [Ca2+](i) increases that were reduced to similar to 60% of control in the presence of either atropine ( 1 muM) or mecamylamine ( 3 muM) and to < 20% in the presence of both antagonists. Removal of external Ca2+ reduced ACh-induced responses to 58% of control, which was unchanged in the presence of mecamylamine but reduced to 5% of control by atropine. The nAChR-induced [Ca2+](i) response was reduced to 50% by 10 M ryanodine, whereas the mAChR-induced response was unaffected by ryanodine, suggesting that Ca2+ release from ryanodine-sensitive Ca2+ stores may only contribute to the nAChR-induced [Ca2+](i) responses. Perforated-patch whole cell recording at - 60 mV shows that the rise in [Ca2+](i) is concomitant with slow outward currents on mAChR activation and with rapid inward currents after nAChR activation. In conclusion, different signaling pathways mediate the rise in [Ca2+](i) and membrane currents evoked by ACh binding to nicotinic and muscarinic receptors in rat intracardiac neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gelatinase, urease, lipase, phospholipase and DNase activities of 11 chromoblastomycosis agents constituted by strains of Fonsecaea pedrosoi, F. compacta, Phialophora verrucosa, Cladosporium carrionii, Cladophialophora bantiana and Exophiala jeanselmei were analyzed and compared. All strains presented urease, gelatinase and lipase activity. Phospholipase activity was detected only on five of six strains of F. pedrosoi. DNase activity was not detected on the strains studied. Our results indicate that only phospholipase production, induced by egg yolk substrate, was useful for the differentiation of the taxonomically related species studied, based on their enzymatic profile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During myocardial ischemia and reperfusion both purines and pyrimidines are released into the extracellular milieu, thus creating a signaling wave that propagates to neighboring cells via membrane-bound P2 purinoceptors activation. Cardiac fibroblasts (CF) are important players in heart remodeling, electrophysiological changes and hemodynamic alterations following myocardial infarction. Here, we investigated the role UTP on calcium signaling and proliferation of CF cultured from ventricles of adult rats. Co-expression of discoidin domain receptor 2 and -smooth muscle actin indicate that cultured CF are activated myofibroblasts. Intracellular calcium ([Ca2+]i) signals were monitored in cells loaded with Fluo-4 NW. CF proliferation was evaluated by the MTT assay. UTP and the selective P2Y4 agonist, MRS4062, caused a fast desensitizing [Ca2+]i rise originated from thapsigargin-sensitive internal stores, which partially declined to a plateau providing the existence of Ca2+ in the extracellular fluid. The biphasic [Ca2+]i response to UTP was attenuated respectively by P2Y4 blockers, like reactive blue-2 and suramin, and by the P2Y11 antagonist, NF340. UTP and the P2Y2 receptor agonist MRS2768 increased, whereas the selective P2Y11 agonist NF546 decreased, CF growth; MRS4062 was ineffective. Blockage of the P2Y11receptor or its coupling to adenylate cyclase boosted UTP-induced CF proliferation. Confocal microscopy and Western blot analysis confirmed the presence of P2Y2, P2Y4 and P2Y11 receptors. Data indicate that besides P2Y4 and P2Y2 receptors which are responsible for UTP-induced [Ca2+]i transients and growth of CF, respectively, synchronous activation of the previously unrecognized P2Y11 receptor may represent an important target for anti-fibrotic intervention in cardiac remodeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biochemistry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuous cell lines that proliferate in chemically defined and simple media have been highly regarded as suitable alternatives for vaccine production. One such cell line is the AG1.CR.pIX avian cell line developed by PROBIOGEN. This cell line can be cultivated in a fully scalable suspension culture and adapted to grow in chemically defined, calf serum free, medium [1][5]. The medium composition and cultivation strategy are important factors for reaching high virus titers. In this project, a series of computational methods was used to simulate the cells response to different environments. The study is based on the metabolic model of the central metabolism proposed in [1]. In a first step, Metabolic Flux Analysis (MFA) was used along with measured uptake and secretion fluxes to estimate intracellular flux values. The network and data were found to be consistent. In a second step, Flux Balance Analysis (FBA) was performed to access the cells biological objective. The objective that resulted in the best predicted results fit to the experimental data was the minimization of oxidative phosphorylation. Employing this objective, in the next step Flux Variability Analysis (FVA) was used to characterize the flux solution space. Furthermore, various scenarios, where a reaction deletion (elimination of the compound from the media) was simulated, were performed and the flux solution space for each scenario was calculated. Growth restrictions caused by essential and non-essential amino acids were accurately predicted. Fluxes related to the essential amino acids uptake and catabolism, the lipid synthesis and ATP production via TCA were found to be essential to exponential growth. Finally, the data gathered during the previous steps were analyzed using principal component analysis (PCA), in order to assess potential changes in the physiological state of the cell. Three metabolic states were found, which correspond to zero, partial and maximum biomass growth rate. Elimination of non-essential amino acids or pyruvate from the media showed no impact on the cells assumed normal metabolic state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polysaccharides are gaining increasing attention as potential environmental friendly and sustainable building blocks in many fields of the (bio)chemical industry. The microbial production of polysaccharides is envisioned as a promising path, since higher biomass growth rates are possible and therefore higher productivities may be achieved compared to vegetable or animal polysaccharides sources. This Ph.D. thesis focuses on the modeling and optimization of a particular microbial polysaccharide, namely the production of extracellular polysaccharides (EPS) by the bacterial strain Enterobacter A47. Enterobacter A47 was found to be a metabolically versatile organism in terms of its adaptability to complex media, notably capable of achieving high growth rates in media containing glycerol byproduct from the biodiesel industry. However, the industrial implementation of this production process is still hampered due to a largely unoptimized process. Kinetic rates from the bioreactor operation are heavily dependent on operational parameters such as temperature, pH, stirring and aeration rate. The increase of culture broth viscosity is a common feature of this culture and has a major impact on the overall performance. This fact complicates the mathematical modeling of the process, limiting the possibility to understand, control and optimize productivity. In order to tackle this difficulty, data-driven mathematical methodologies such as Artificial Neural Networks can be employed to incorporate additional process data to complement the known mathematical description of the fermentation kinetics. In this Ph.D. thesis, we have adopted such an hybrid modeling framework that enabled the incorporation of temperature, pH and viscosity effects on the fermentation kinetics in order to improve the dynamical modeling and optimization of the process. A model-based optimization method was implemented that enabled to design bioreactor optimal control strategies in the sense of EPS productivity maximization. It is also critical to understand EPS synthesis at the level of the bacterial metabolism, since the production of EPS is a tightly regulated process. Methods of pathway analysis provide a means to unravel the fundamental pathways and their controls in bioprocesses. In the present Ph.D. thesis, a novel methodology called Principal Elementary Mode Analysis (PEMA) was developed and implemented that enabled to identify which cellular fluxes are activated under different conditions of temperature and pH. It is shown that differences in these two parameters affect the chemical composition of EPS, hence they are critical for the regulation of the product synthesis. In future studies, the knowledge provided by PEMA could foster the development of metabolically meaningful control strategies that target the EPS sugar content and oder product quality parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The weak fixation of biomaterials within the bone structure is one of the major reasons of implants failures. Calcium phosphate (CaP) coatings are used in bone tissue engineering to improve implant osseointegration by enhancing cellular adhesion, proliferation and differentiation, leading to a tight and stable junction between implant and host bone. It has also been observed that materials compatible with bone tissue either have a CaP coating or develop such a calcified surface upon implantation. Thus, the development of bioactive coatings becomes essential for further improvement of integration with the surrounding tissue. However, most of current applied CaP coatings methods (e.g. physical vapor deposition), cannot be applied to complex shapes and porous implants, provide poor structural control over the coating and prevent incorporation of bioactive organic compounds (e.g. antibiotics, growth factors) because of the used harsh processing conditions. Layer-by-layer (LbL) is a versatile technology that permits the building-up of multilayered polyelectrolyte films in mild conditions based on the alternate adsorption of cationic and anionic elements that can integrate bioactive compounds. As it is recognized in nature s biomineralization process the presence of an organic template to induce mineral deposition, this work investigate a ion based biomimetic method where all the process is based on LbL methodology made of weak natural-origin polyelectrolytes. A nanostructured multilayer component, with 5 or 10 bilayers, was produced initially using chitosan and chondroitin sulphate polyelectrolyte biopolymers, which possess similarities with the extracellular matrix and good biocompatibility. The multilayers are then rinsed with a sequential passing of solutions containing Ca2+ and PO43- ions. The formation of CaP over the polyelectrolyte multilayers was confirmed by QCM-D, SEM and EDX. The outcomes show that 10 polyelectrolyte bilayer condition behaved as a better site for initiating the formation of CaP as the precipitation occur at earlier stages than in 5 polyelectrolyte bilayers one. This denotes that higher number of bilayers could hold the CaP crystals more efficiently. This work achieved uniform coatings that can be applied to any surface with access to the liquid media in a low-temperature method, which potentiates the manufacture of effective bioactive biomaterials with great potential in orthopedic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing interest for greener and biological methods of synthesis has led to the development of non-toxic and comparatively more bioactive nanoparticles. Unlike physical and chemical methods of nanoparticle synthesis, microbial synthesis in general and mycosynthesis in particular is cost-effective and environment-friendly. However, different aspects, such as the rate of synthesis, monodispersity and downstream processing, need to be improved. Many fungal-based mechanisms have been proposed for the formation of silver nanoparticles (AgNPs), mainly those involving the presence of nitrate reductase, which has been detected in filtered fungus cell used for AgNPs production. There is a general acceptance that nitrate reductase is the main responsible for the reduction of Ag ions for the formation of AgNPs. However, this generally accepted mechanism for fungal AgNPs production is not totally understood. In order to elucidate the molecules participating in the mechanistic formation of metal nanoparticles, the current study is focused on the enzymes and other organic compounds involved in the biosynthesis of AgNPs. The use of each free fungal mycelium of both Stereum hirsutum and Fusarium oxysporum will be assessed. In order to identify defective mutants on the nitrate reductase structural gene niaD, fungal cultures of S.hirsutum and F.oxysporum will be selected by chlorate resistance. In addition, in order to verify if each compound identified as key-molecule influenced on the production of nanoparticles, an in vitro assay using different nitrogen sources will be developed. Lately, fungal extracellular enzymes will be measured and an in vitro assay will be done. Finally, The nanoparticle formation and its characterization will be evaluated by UV-visible spectroscopy, electron microscopy (TEM), X-ray diffraction analysis (XRD), Fourier transforms infrared spectroscopy (FTIR), and LC-MS/MS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertao de mestrado integrado em Engenharia Biomdica (rea de especializao em Engenharia Clnica)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo general del proyecto es estudiar el efecto de la progesterona y de algunas protenas del plasma seminal sobre la actividad del Ca2+ en diferentes procesos fisiolgicos que ocurren en el espermatozoide, los cuales estn estrechamente relacionados con la capacidad fertilizante de esta clula. La progesterona, principal esteroide secretado por las clulas del cumulus oophorus, ejerce su efecto a travs de un receptor no-genmico provocando aumento en el calcio intracelular de los espermatozoides y, consecuentemente, promoviendo la capacitacin, la respuesta quimiotctica y la exocitosis acrosomal. Pese a estas observaciones, los mecanismos a travs de los cuales la progesterona estimula fenmenos tan diversos en el espermatozoide son an desconocidos. Tampoco se conoce con exactitud el papel funcional y los mecanismos de accin de algunas protenas del plasma seminal que interaccionan y se unen a los espermatozoides, con alta especificidad, durante la eyaculacin. Por lo tanto, resulta altamente interesante profundizar los estudios sobre las propiedades funcionales de las protenas caltrin (calcium transport inhibitor) y -microseminoprotein (MSP) del plasma seminal de mamferos, las cuales responden a las caractersticas mencionadas. Los estudios hasta ahora realizados han dado cuenta de que caltrin inhibe la incorporacin de Ca2+ extracelular, previene la exocitosis acrosomal espontnea y promueve la unin espermatozoide-zona pelcida. Tambin hay datos preliminares que sugieren un efecto inhibitorio sobre la movilidad hiperactivada de los espermatozoides. Respecto a MSP, slo se sabe que inhibe la exocitosis acrosomal espontnea y que su contenido, en el plasma seminal, guarda una relacin inversa con la fertilidad. Por todo lo expuesto, se propone estudiar los mecanismos de accin de la progesterona y las protenas caltrin y MSP sobre los procesos fisiolgicos antes indicados. Para ello, se estudiarn las variaciones de Ca2+ intracelular en espermatozoides individuales sometidos a diferentes tratamientos (gradientes de progesterona, capacitacin en presencia y ausencia de caltrin y/o MSP, etc.), usando video microscopa de fluorescencia y anlisis computarizado de imgenes. Tambin se examinar la influencia de estas molculas sobre la interaccin de gametas y la fertilizacin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El Estrs de Retculo Endoplsmico (RE) es inducido por la acumulacin de protenas sin plegar en el lumen de la organela. Esto se puede observar en diversas situaciones fisio-patolgicas como durante una infeccin viral o en proceso isqumico. Adems, contribuye a la base molecular de numerosas enfermedades ya sea ndole metablico (Fibrosis qustica o Diabetes Miellitus) o neurodegenerativas como mal de Alzheimer o Parkinson (Mutat Res, 2005, 569). Para restablecer la homeostasis en la organela se activa una seal de transduccin (UPR), cuya respuesta inmediata es la atenuacin de la sntesis de protena debido a la fosforilacin de subunidad alpha del factor eucaritico de iniciacin de translacin (eIF2) va PERK. Esta es una protena de membrana de RE que detecta estrs. Bajo condiciones normales, PERK est inactiva debido a la asociacin de su dominio luminar con la chaperona BIP (Nat Cell Biol, 2000, 2: 326). Frente a una situacin de estrs, la chaperona se disocia causando desinhibicin. Recientemente, (Plos One 5: e11925) se observ, bajo condiciones de estrs, un aumento de Ca2+ citoslico y un rpido incremento de la expresin de calcineurina (CN), una fosfatasa citoslica dependiente de calcio, heterodimrica formada por una subunidad cataltica (CN-A) y una regulatoria (CN-B). Adems, CN interacciona, sin intermediarios, con el dominio citoslico de PERK favoreciendo su trans-autofosforilacin. Resultados preliminares indican que, astrocitos CNA-/- exhibieron, en condiciones basales, un mayor nmero de clulas muertas y de niveles de eIF2 fosforilado que los astrocitos CNA-/-. Hiptesis: CNA/B interacciona con PERK cuando el Ca2+ citoslico esta incrementado luego de haberse inducido Estrs de RE, lo cual promueve dimerizacin y auto-fosforilacin de la quinasa, acentundose as la fosforilacin de eIF2 e inhibicin de la sntesis de protenas. Esta activacin citoslica de PERK colaborara con la ya descrita, desinhibicin luminal llevada cabo por BIP. Cuando el Ca2+ citoslico retorna a los niveles basales, PERK fosforila a CN, reduciendo su afinidad de unin y disocindose el complejo CN/PERK. Objetivo general: Definir las condiciones por las cuales CN interacciona con PERK y regula la fosforilacin de eIF2 e inhibicin de la sntesis de protena. Objetivos especficos: I-Estudiar la diferencia de afinidades y dependencia de Ca2+, de las dos isoformas de CN ( y ) en su asociacin con PERK. Adems verificar la posible participacin de la subunidad B de CN en esta interaccin. II-Determinar si la auto-fosforilacin de PERK es diferencialmente regulada por las dos isoformas de CN. III-Discernir la relacin del estado de fosforilacin de CN con su unin a PERK. IV-Determinar efectos fisiolgicos de la interaccin de CN-PERK durante la respuesta de Estrs de RE. Para llevar a cabo este proyecto se realizarn experimentos de biologa molecular, interaccin protena-protena, ensayos de fosforilacin in vitro y un perfil de polisoma con astrocitos CNA-/- , CNA-/- y astrocitos controles. Se espera encontrar una mayor afinidad de unin a PERK de la isoforma de CN y en condiciones donde la concentracin de Ca2+ sea del orden micromolar e imite niveles del in durante un estrs. Con respecto al estado de fosforilacin de CN, debido a los resultados preliminares, donde solo se la encontr fosforilada en condiciones basales, se piensa que CN podra interactuar con mayor afinidad con PERK cuando CN se encuentre desfosforilada. Por ltimo, se espera encontrar un aumento de eIF2 fosforilado y una acentuacin de la atenuacin de la sntesis de protena como consecuencia de la mayor activacin de PERK por su asociacin con la isoforma de CN en astrocitos donde el Estrs de RE se indujo por privacin de oxigeno y glucosa. Estos experimentos permitirn avanzar en el estudio de una nueva funcin citoprotectora de CN recientemente descrita por nuestro grupo de trabajo y sus implicancias en un modelo de isquemia. The accumulation of unfolded proteins into the Endoplasmic Reticulum (ER) activates a signal transduction cascade called Unfolding Protein Response (UPR), which attempts to restore homeostasis in the organelle. (PKR)-like-ER kinase (PERK) is an early stress response transmembrane protein that is generally inactive due to its association with the chaperone BIP. During ER stress, BIP is tritrated by the unfolded protein, leading PERK activation and phosphorylation of eukaryotic initiation factor-2 alpha (eIF2alpha), which attenuates protein sntesis. If ER damage is too great and homeostasis is not restored within a certain period of time, an apoptotic response is elicited. We recently demonstrated a cytosolic Ca2+ increase in Xenopus oocytes after induce ER stress. Moreover, calcineurin A/B, a an heterotrimeric Ca2+ dependent phosphatases (CN-A/B), associates with PERK increasing its auto-phosphorylation and significantly enhancing cell viability. Preliminary results suggest that, CN-A-/- knockout astrocytes exhibit a significant higher eIF2 phosphorylated level compared to CN-A-/- astrocytes. Our working hypothesis establishes that: CN binds to PERK when cytosolic Ca2+ is initially increased by ER stress, promoting dimerization and autophosphorylation, which leads to phosphorylation of elF2 and subsequently attenuation of protein translation. When cytosolic Ca2+ returns to resting levels, PERK phosphorylates CN, reducing its binding affinity so that the CN/PERK complex dissociates. The goal of this project is to determine the conditions by which CN binding to PERK attenuates protein translation during the ER stress response and subsequently, to determine how the interaction of CN with PERK is terminated when stress is removed. To perform this project is planed to do molecular biology experiments, pull down assays, in vitro phosphorylations and assess overall mRNA translation efficiency doing a polisome profile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FUNDAMENTO: Treinamento fsico (TF) aumenta a sensibilidade dos hormnios tireoidianos (HT) e a expresso gnica de estruturas moleculares envolvidas no movimento intracelular de clcio do miocrdio, enquanto a restrio alimentar (RIA) promove efeitos contrrios ao TF. OBJETIVO: Avaliar os efeitos da associao TF e RIA sobre os nveis plasmticos dos HT e a produo de mRNA dos receptores HT e estruturas moleculares do movimento de clcio do miocrdio de ratos. MTODOS: Utilizaram-se ratos Wistar Kyoto divididos em: controle (C, n = 7), RIA (R50, n = 7), exerccio fsico (EX, n = 7) e exerccio fsico + RIA (EX50, n = 7). A RIA foi de 50% e o TF foi natao (1 hora/dia, cinco sesses/semana, 12 semanas consecutivas). Avaliaram-se as concentraes sricas de triiodotironina (T3), tiroxina (T4) e hormnio tireotrfico (TSH). O mRNA da bomba de clcio do retculo sarcoplasmtico (SERCA2a), fosfolamban (PLB), trocador Na+/Ca+2 (NCX), canal lento de clcio (canal-L), rianodina (RYR), calsequestrina (CQS) e receptor de HT (TR&#945;1 e TR&#946;1) do miocrdio foram avaliados por reao em cadeia da polimerase (PCR) em tempo real. RESULTADOS: RIA reduziu o T4, TSH e mRNA do TR&#945;1 e aumentou a expresso da PLB, NCX e canal-L. TF aumentou a expresso do TR&#946;1, canal-L e NCX. A associao TF e RIA reduziu T4 e TSH e aumentou o mRNA do TR&#946;1, SERCA2a, NCX, PLB e correlao do TR&#946;1 com a CQS e NCX. CONCLUSO: Associao TF e RIA aumentou o mRNA das estruturas moleculares clcio transiente, porm o eixo HT-receptor no parece participar da transcrio gnica dessas estruturas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Stress is associated with cardiovascular diseases. Objective: This study aimed at assessing whether chronic stress induces vascular alterations, and whether these modulations are nitric oxide (NO) and Ca2+ dependent. Methods: Wistar rats, 30 days of age, were separated into 2 groups: control (C) and Stress (St). Chronic stress consisted of immobilization for 1 hour/day, 5 days/week, 15 weeks. Systolic blood pressure was assessed. Vascular studies on aortic rings were performed. Concentration-effect curves were built for noradrenaline, in the presence of L-NAME or prazosin, acetylcholine, sodium nitroprusside and KCl. In addition, Ca2+ flux was also evaluated. Results: Chronic stress induced hypertension, decreased the vascular response to KCl and to noradrenaline, and increased the vascular response to acetylcholine. L-NAME blunted the difference observed in noradrenaline curves. Furthermore, contractile response to Ca2+ was decreased in the aorta of stressed rats. Conclusion: Our data suggest that the vascular response to chronic stress is an adaptation to its deleterious effects, such as hypertension. In addition, this adaptation is NO- and Ca2+-dependent. These data help to clarify the contribution of stress to cardiovascular abnormalities. However, further studies are necessary to better elucidate the mechanisms involved in the cardiovascular dysfunction associated with stressors. (Arq Bras Cardiol. 2014; [online].ahead print, PP.0-0)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background: Diet-induced obesity is frequently used to demonstrate cardiac dysfunction. However, some rats, like humans, are susceptible to developing an obesity phenotype, whereas others are resistant to that. Objective: To evaluate the association between obesity resistance and cardiac function, and the impact of obesity resistance on calcium handling. Methods: Thirty-day-old male Wistar rats were distributed into two groups, each with 54 animals: control (C; standard diet) and obese (four palatable high-fat diets) for 15 weeks. After the experimental protocol, rats consuming the high-fat diets were classified according to the adiposity index and subdivided into obesity-prone (OP) and obesity-resistant (OR). Nutritional profile, comorbidities, and cardiac remodeling were evaluated. Cardiac function was assessed by papillary muscle evaluation at baseline and after inotropic maneuvers. Results: The high-fat diets promoted increase in body fat and adiposity index in OP rats compared with C and OR rats. Glucose, lipid, and blood pressure profiles remained unchanged in OR rats. In addition, the total heart weight and the weight of the left and right ventricles in OR rats were lower than those in OP rats, but similar to those in C rats. Baseline cardiac muscle data were similar in all rats, but myocardial responsiveness to a post-rest contraction stimulus was compromised in OP and OR rats compared with C rats. Conclusion: Obesity resistance promoted specific changes in the contraction phase without changes in the relaxation phase. This mild abnormality may be related to intracellular Ca2+ handling.