998 resultados para Extensive reading
Resumo:
Background: Social and material deprivation is associated with poor health, decreased subjective well-being, and limited opportunities for personal development. To date, little is known about the lived experiences of Finnish low-income youths and the general purpose of this study is to fill this gap. Despite the extensive research on socioeconomic income disparities, only a few scholars have addressed the question of how low socioeconomic position is experienced by disadvantaged people themselves. Little is known about the everyday social processes that lead to decreased well-being of economically and socially disadvantaged citizens. Data: The study is based on the data of 65 autobiographical essays written by Finnish low-income youths aged 14-29 (M=23.51, SD=3.95). The research data were originally collected in a Finnish nationwide writing contest “Arkipäivän kokemuksia köyhyydestä” [Everyday Experiences of Poverty] between June and September of 2006. The contest was partaken by 850 Finnish writers. Methods and key concepts: Autobiographical narratives (N=65) of low-income youths were analyzed based on grounded theory methodology (GTM). The analysis was not built on specific pre-conceived categorizations; it was guided by the paradigm model and so-called “sensitizing concepts”. The concepts this study utilized were based on the research literature on socioeconomic inequalities, resilience, and coping. Socioeconomic inequalities refer to unequal distribution of resources, such as income, social status, and health, between social groups. The concept of resilience refers to an individual’s capacity to cope despite existing risk factors and conditions that are harmful to health and well-being. Coping strategies can be understood as ways by which a person tries to cope with psychological stress in a situation where internal or externals demands exceed one’s resources. The ways to cope are cognitive or behavioral efforts by which individual tries to relieve the stress and gain new resources. Lack of material and social resources is associated with increased exposure to health-related stressors during the life-course. Aims: The first aim of this study is to illustrate how youths with low socioeconomic status perceive the causes and consequences of their social and material deprivation. The second aim is to describe what kind of coping strategies youths employ to cope in their everyday life. The third aim is to build an integrative conceptual framework based on the relationships between causes, consequences, and individual coping strategies associated with deprivation. The analysis was carried out through systematic coding and orderly treatment of the data based on the grounded theory methodology. Results: Finnish low-income youths attributed the primary causes of deprivation to their family background, current socioeconomic status, sudden life changes, and contextual factors. Material and social deprivation was associated with various kinds of negative psychological, social, and material consequences. Youths used a variety of coping strategies that were identified as psychological, social, material, and functional-behavioral. Finally, a conceptual framework was formulated to link the findings together. In the discussion, the results were compared and contrasted to the existing research literature. The main references of the study were: Coping: Aldwin (2007); Lazarus & Folkman (1984); Hobfoll (1989, 2001, 2002). Deprivation: Larivaara, Isola, & Mikkonen (2007); Lister (2004); Townsend (1987); Raphael (2007). Health inequalities: Dahlgren & Whitehead (2007); Lynch. et al. (2000); Marmot & Wilkinson (2006); WHO (2008). Methods: Charmaz (2006); Flick (2009); Strauss & Corbin (1990). Resilience: Cutuli & Masten (2009); Luthar (2006).
Resumo:
We propose a new paradigm for displaying comments: showing comments alongside parts of the article they correspond to. We evaluate the effectiveness of various approaches for this task and show that a combination of bag of words and topic models performs the best.
Resumo:
Clock synchronization is an extremely important requirement of wireless sensor networks(WSNs). There are many application scenarios such as weather monitoring and forecasting etc. where external clock synchronization may be required because WSN itself may consists of components which are not connected to each other. A usual approach for external clock synchronization in WSNs is to synchronize the clock of a reference node with an external source such as UTC, and the remaining nodes synchronize with the reference node using an internal clock synchronization protocol. In order to provide highly accurate time, both the offset and the drift rate of each clock with respect to reference node are estimated from time to time, and these are used for getting correct time from local clock reading. A problem with this approach is that it is difficult to estimate the offset of a clock with respect to the reference node when drift rate of clocks varies over a period of time. In this paper, we first propose a novel internal clock synchronization protocol based on weighted averaging technique, which synchronizes all the clocks of a WSN to a reference node periodically. We call this protocol weighted average based internal clock synchronization(WICS) protocol. Based on this protocol, we then propose our weighted average based external clock synchronization(WECS) protocol. We have analyzed the proposed protocols for maximum synchronization error and shown that it is always upper bounded. Extensive simulation studies of the proposed protocols have been carried out using Castalia simulator. Simulation results validate our theoretical claim that the maximum synchronization error is always upper bounded and also show that the proposed protocols perform better in comparison to other protocols in terms of synchronization accuracy. A prototype implementation of the proposed internal clock synchronization protocol using a few TelosB motes also validates our claim.
Resumo:
This work is a continuation of our efforts to quantify the irregular scalar stress signals from the Ananthakrishna model for the Portevin-Le Chatelier instability observed under constant strain rate deformation conditions. Stress related to the spatial average of the dislocation activity is a dynamical variable that also determines the time evolution of dislocation densities. We carry out detailed investigations on the nature of spatiotemporal patterns of the model realized in the form of different types of dislocation bands seen in the entire instability domain and establish their connection to the nature of stress serrations. We then characterize the spatiotemporal dynamics of the model equations by computing the Lyapunov dimension as a function of the drive parameter. The latter scales with the system size only for low strain rates, where isolated dislocation bands are seen, and at high strain rates, where fully propagating bands are seen. At intermediate applied strain rates corresponding to the partially propagating bands, the Lyapunov dimension exhibits two distinct slopes, one for small system sizes and another for large. This feature is rationalized by demonstrating that the spatiotemporal patterns for small system sizes are altered from the partially propagating band types to isolated burst type. This in turn allows us to reconfirm that low-dimensional chaos is projected from the stress signals as long as there is a one-to-one correspondence between the bursts of dislocation bands and the stress drops. We then show that the stress signals in the regime of partially to fully propagative bands have features of extensive chaos by calculating the correlation dimension density. We also show that the correlation dimension density also depends on the system size. A number of issues related to the system size dependence of the Lyapunov dimension density and the correlation dimension density are discussed.
Resumo:
We review the spatio-temporal dynamical features of the Ananthakrishna model for the Portevin-Le Chatelier effect, a kind of plastic instability observed under constant strain rate deformation conditions. We then establish a qualitative correspondence between the spatio-temporal structures that evolve continuously in the instability domain and the nature of the irregularity of the scalar stress signal. Rest of the study is on quantifying the dynamical information contained in the stress signals about the spatio-temporal dynamics of the model. We show that at low applied strain rates, there is a one-to-one correspondence with the randomly nucleated isolated bursts of mobile dislocation density and the stress drops. We then show that the model equations are spatio-temporally chaotic by demonstrating the number of positive Lyapunov exponents and Lyapunov dimension scale with the system size at low and high strain rates. Using a modified algorithm for calculating correlation dimension density, we show that the stress-strain signals at low applied strain rates corresponding to spatially uncorrelated dislocation bands exhibit features of low dimensional chaos. This is made quantitative by demonstrating that the model equations can be approximately reduced to space independent model equations for the average dislocation densities, which is known to be low-dimensionally chaotic. However, the scaling regime for the correlation dimension shrinks with increasing applied strain rate due to increasing propensity for propagation of the dislocation bands. The stress signals in the partially propagating to fully propagating bands turn to have features of extensive chaos.
Resumo:
The ribosomal P-site hosts the peptidyl-tRNAs during translation elongation. Which P-site elements support these tRNA species to maintain codon-anticodon interactions has remained unclear. We investigated the effects of P-site features of methylations of G966, C967, and the conserved C-terminal tail sequence of Ser, Lys, and Arg (SKR) of the S9 ribosomal protein in maintenance of the translational reading frame of an mRNA. We generated Escherichia coli strains deleted for the SKR sequence in S9 ribosomal protein, RsmB (which methylates C967), and RsmD (which methylates G966) and used them to translate LacZ from its +1 and -1 out-of-frame constructs. We show that the S9 SKR tail prevents both the +1 and -1 frameshifts and plays a general role in holding the P-site tRNA/peptidyl-tRNA in place. In contrast, the G966 and C967 methylations did not make a direct contribution to the maintenance of the translational frame of an mRNA. However, deletion of rsmB in the S9 Delta 3 background caused significantly increased -1 frameshifting at 37 degrees C. Interestingly, the effects of the deficiency of C967 methylation were annulled when the E. coli strain was grown at 30 degrees C, supporting its context-dependent role.
Resumo:
Drastic groundwater resource depletion due to excessive extraction for irrigation is a major concern in many parts of India. In this study, an attempt was made to simulate the groundwater scenario of the catchment using ArcSWAT. Due to the restriction on the maximum initial storage, the deep aquifer component in ArcSWAT was found to be insufficient to represent the excessive groundwater depletion scenario. Hence, a separate water balance model was used for simulating the deep aquifer water table. This approach is demonstrated through a case study for the Malaprabha catchment in India. Multi-site rainfall data was used to represent the spatial variation in the catchment climatology. Model parameters were calibrated using observed monthly stream flow data. Groundwater table simulation was validated using the qualitative information available from the field. The stream flow was found to be well simulated in the model. The simulated groundwater table fluctuation is also matching reasonably well with the field observations. From the model simulations, deep aquifer water table fluctuation was found very severe in the semi-arid lower parts of the catchment, with some areas showing around 60m depletion over a period of eight years. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
In programmed -1 ribosomal frameshift, an RNA pseudoknot stalls the ribosome at specific sequence and restarts translation in a new reading frame. A precise understanding of structural characteristics of these pseudoknots and their PRF inducing ability has not been clear to date. To investigate this phenomenon, we have studied various structural aspects of a -1 PRF inducing RNA pseudoknot from BWYV using extensive molecular dynamics simulations. A set of functional and poorly functional forms, for which previous mutational data were available, were chosen for analysis. These structures differ from each other by either single base substitutions or base-pair replacements from the native structure. We have rationalized how certain mutations in RNA pseudoknot affect its function; e.g., a specific base substitution in loop 2 stabilizes the junction geometry by forming multiple noncanonical hydrogen bonds, leading to a highly rigid structure that could effectively resist ribosome-induced unfolding, thereby increasing efficiency. While, a CG to AU pair substitution in stem 1 leads to loss of noncanonical hydrogen bonds between stems and loop, resulting in a less stable structure and reduced PRF inducing ability, inversion of a pair in stem 2 alters specific base-pair geometry that might be required in ribosomal recognition of nucleobase groups, negatively affecting pseudoknot functioning. These observations illustrate that the ability of an RNA pseudoknot to induce -1 PRF with an optimal rate depends on several independent factors that contribute to either the local conformational variability or geometry
Resumo:
Story understanding involves many perceptual and cognitive subprocesses, from perceiving individual words, to parsing sentences, to understanding the relationships among the story characters. We present an integrated computational model of reading that incorporates these and additional subprocesses, simultaneously discovering their fMRI signatures. Our model predicts the fMRI activity associated with reading arbitrary text passages, well enough to distinguish which of two story segments is being read with 74% accuracy. This approach is the first to simultaneously track diverse reading subprocesses during complex story processing and predict the detailed neural representation of diverse story features, ranging from visual word properties to the mention of different story characters and different actions they perform. We construct brain representation maps that replicate many results from a wide range of classical studies that focus each on one aspect of language processing and offer new insights on which type of information is processed by different areas involved in language processing. Additionally, this approach is promising for studying individual differences: it can be used to create single subject maps that may potentially be used to measure reading comprehension and diagnose reading disorders.
Resumo:
Computing the maximum of sensor readings arises in several environmental, health, and industrial monitoring applications of wireless sensor networks (WSNs). We characterize the several novel design trade-offs that arise when green energy harvesting (EH) WSNs, which promise perpetual lifetimes, are deployed for this purpose. The nodes harvest renewable energy from the environment for communicating their readings to a fusion node, which then periodically estimates the maximum. For a randomized transmission schedule in which a pre-specified number of randomly selected nodes transmit in a sensor data collection round, we analyze the mean absolute error (MAE), which is defined as the mean of the absolute difference between the maximum and that estimated by the fusion node in each round. We optimize the transmit power and the number of scheduled nodes to minimize the MAE, both when the nodes have channel state information (CSI) and when they do not. Our results highlight how the optimal system operation depends on the EH rate, availability and cost of acquiring CSI, quantization, and size of the scheduled subset. Our analysis applies to a general class of sensor reading and EH random processes.
Resumo:
Two-component systems (TCSs), which contain paired sensor kinase and response regulator proteins, form the primary apparatus for sensing and responding to environmental cues in bacteria. TCSs are thought to be highly specific, displaying minimal cross-talk, primarily due to the co-evolution of the participating proteins. To assess the level of cross-talk between the TCSs of Mycobacterium tuberculosis, we mapped the complete interactome of the M. tuberculosis TCSs using phosphotransfer profiling. Surprisingly, we found extensive crosstalk among the M. tuberculosis TCSs, significantly more than that in the TCSs in Escherichia coli or Caulobacter crescentus, thereby offering an alternate to specificity paradigm in TCS signalling. Nearly half of the interactions we detected were significant novel cross-interactions, unravelling a potentially complex signalling landscape. We classified the TCSs into specific `one-to-one' and promiscuous `one-to-many' and `many-to-one' circuits. Using mathematical modelling, we deduced that the promiscuous signalling observed can explain several currently confounding observations about M. tuberculosis TCSs. Our findings suggest an alternative paradigm of bacterial signalling with significant cross-talk between TCSs yielding potentially complex signalling landscapes.
Resumo:
Crack growth due to cavity growth and coalescence along grain boundaries is analyzed under transient and extensive creep conditions in a compact tension specimen. Account is taken of the finite geometry changes accompanying crack tip blunting. The material is characterized as an elastic-power law creeping solid with an additional contribution to the creep rate arising from a given density of cavitating grain boundary facets. All voids are assumed present from the outset and distributed on a given density of cavitating grain boundary facets. The evolution of the stress fields with crack growth under three load histories is described in some detail for a relatively ductile material. The full-field plane strain finite element calculations show the competing effects of stress relaxation due to constrained creep, diffusion and crack tip blunting. and of stress increase due to the instantaneous elastic response to crack growth. At very high crack growth rates the Hui-Riedel fields dominate the crack tip region. However. the high growth rates are not sustained for any length of time in the compact tension geometry analyzed. The region of dominance of the Hui-Riedel field shrinks rapidly so that the near-tip fields are controlled by the HRR-type field shortly after the onset of crack growth. Crack growth rates under various conditions of loading and spanning the range of times from small scale creep to extensive creep are obtained. We show that there is a strong similarity between crack growth history and the behaviour of the C(t) and C(t) parameters. so that crack growth rates correlate rather well with C(t) and C(t). A relatively brittle material is also considered that has a very different near-tip stress field and crack growth history.