880 resultados para Evaluation models
Resumo:
Dua and Miller (1996) created leading and coincident employment indexes for the state of Connecticut, following Moore's (1981) work at the national level. The performance of the Dua-Miller indexes following the recession of the early 1990s fell short of expectations. This paper performs two tasks. First, it describes the process of revising the Connecticut Coincident and Leading Employment Indexes. Second, it analyzes the statistical properties and performance of the new indexes by comparing the lead profiles of the new and old indexes as well as their out-of-sample forecasting performance, using the Bayesian Vector Autoregressive (BVAR) method. The new indexes show improved performance in dating employment cycle chronologies. The lead profile test demonstrates that superiority in a rigorous, non-parametric statistic fashion. The mixed evidence on the BVAR forecasting experiments illustrates the truth in the Granger and Newbold (1986) caution that leading indexes properly predict cycle turning points and do not necessarily provide accurate forecasts except at turning points, a view that our results support.
Resumo:
Random Forests™ is reported to be one of the most accurate classification algorithms in complex data analysis. It shows excellent performance even when most predictors are noisy and the number of variables is much larger than the number of observations. In this thesis Random Forests was applied to a large-scale lung cancer case-control study. A novel way of automatically selecting prognostic factors was proposed. Also, synthetic positive control was used to validate Random Forests method. Throughout this study we showed that Random Forests can deal with large number of weak input variables without overfitting. It can account for non-additive interactions between these input variables. Random Forests can also be used for variable selection without being adversely affected by collinearities. ^ Random Forests can deal with the large-scale data sets without rigorous data preprocessing. It has robust variable importance ranking measure. Proposed is a novel variable selection method in context of Random Forests that uses the data noise level as the cut-off value to determine the subset of the important predictors. This new approach enhanced the ability of the Random Forests algorithm to automatically identify important predictors for complex data. The cut-off value can also be adjusted based on the results of the synthetic positive control experiments. ^ When the data set had high variables to observations ratio, Random Forests complemented the established logistic regression. This study suggested that Random Forests is recommended for such high dimensionality data. One can use Random Forests to select the important variables and then use logistic regression or Random Forests itself to estimate the effect size of the predictors and to classify new observations. ^ We also found that the mean decrease of accuracy is a more reliable variable ranking measurement than mean decrease of Gini. ^
Resumo:
The performance of the Hosmer-Lemeshow global goodness-of-fit statistic for logistic regression models was explored in a wide variety of conditions not previously fully investigated. Computer simulations, each consisting of 500 regression models, were run to assess the statistic in 23 different situations. The items which varied among the situations included the number of observations used in each regression, the number of covariates, the degree of dependence among the covariates, the combinations of continuous and discrete variables, and the generation of the values of the dependent variable for model fit or lack of fit.^ The study found that the $\rm\ C$g* statistic was adequate in tests of significance for most situations. However, when testing data which deviate from a logistic model, the statistic has low power to detect such deviation. Although grouping of the estimated probabilities into quantiles from 8 to 30 was studied, the deciles of risk approach was generally sufficient. Subdividing the estimated probabilities into more than 10 quantiles when there are many covariates in the model is not necessary, despite theoretical reasons which suggest otherwise. Because it does not follow a X$\sp2$ distribution, the statistic is not recommended for use in models containing only categorical variables with a limited number of covariate patterns.^ The statistic performed adequately when there were at least 10 observations per quantile. Large numbers of observations per quantile did not lead to incorrect conclusions that the model did not fit the data when it actually did. However, the statistic failed to detect lack of fit when it existed and should be supplemented with further tests for the influence of individual observations. Careful examination of the parameter estimates is also essential since the statistic did not perform as desired when there was moderate to severe collinearity among covariates.^ Two methods studied for handling tied values of the estimated probabilities made only a slight difference in conclusions about model fit. Neither method split observations with identical probabilities into different quantiles. Approaches which create equal size groups by separating ties should be avoided. ^
Resumo:
Software architectural evaluation is a key discipline used to identify, at early stages of a real-time system (RTS) development, the problems that may arise during its operation. Typical mechanisms supporting concurrency, such as semaphores, mutexes or monitors, usually lead to concurrency problems in execution time that are difficult to be identified, reproduced and solved. For this reason, it is crucial to understand the root causes of these problems and to provide support to identify and mitigate them at early stages of the system lifecycle. This paper aims to present the results of a research work oriented to the development of the tool called ‘Deadlock Risk Evaluation of Architectural Models’ (DREAM) to assess deadlock risk in architectural models of an RTS. A particular architectural style, Pipelines of Processes in Object-Oriented Architectures–UML (PPOOA) was used to represent platform-independent models of an RTS architecture supported by the PPOOA –Visio tool. We validated the technique presented here by using several case studies related to RTS development and comparing our results with those from other deadlock detection approaches, supported by different tools. Here we present two of these case studies, one related to avionics and the other to planetary exploration robotics. Copyright © 2011 John Wiley & Sons, Ltd.
Resumo:
This study includes an analysis of the applicability of current models used for estimating the mechanical properties of conventional concrete to self-compacting concrete. The mechanical properties evaluated are: modulus of elasticity, tensile strength, and modulus of rupture. An extensive database which included the dosifications and the mechanical properties of 627 mixtures from 138 different references, was used. The models considered are: ACI, EC-2, NZS 3101:2006 (New Zealand code) and the CSA A23.3-04 (Canadian code). The precision in estimating the modulus of elasticity and tensile strength is acceptable for all models; however, all models are less precise in estimating the modulus of rupture.
Resumo:
This paper presents a new methodology to build parametric models to estimate global solar irradiation adjusted to specific on-site characteristics based on the evaluation of variable im- portance. Thus, those variables higly correlated to solar irradiation on a site are implemented in the model and therefore, different models might be proposed under different climates. This methodology is applied in a study case in La Rioja region (northern Spain). A new model is proposed and evaluated on stability and accuracy against a review of twenty-two already exist- ing parametric models based on temperatures and rainfall in seventeen meteorological stations in La Rioja. The methodology of model evaluation is based on bootstrapping, which leads to achieve a high level of confidence in model calibration and validation from short time series (in this case five years, from 2007 to 2011). The model proposed improves the estimates of the other twenty-two models with average mean absolute error (MAE) of 2.195 MJ/m2 day and average confidence interval width (95% C.I., n=100) of 0.261 MJ/m2 day. 41.65% of the daily residuals in the case of SIAR and 20.12% in that of SOS Rioja fall within the uncertainty tolerance of the pyranometers of the two networks (10% and 5%, respectively). Relative differences between measured and estimated irradiation on an annual cumulative basis are below 4.82%. Thus, the proposed model might be useful to estimate annual sums of global solar irradiation, reaching insignificant differences between measurements from pyranometers.
Resumo:
Some neural bruise prediction models have been implemented in the laboratory, for the most traded fruit species and varieties, allowing the prediction of the acceptability or rejectability for damages, with respect to the EC Standards. Different models have been built for both quasi-static (compression) and dynamic (impact) loads covering the whole commercial ripening period of fruits. A simulation process has been developed gathering the information on laboratory bruise models and load sensor calibrations for different electronic devices (IS-100 and DEA-1, for impact and compression loads respectively). Some evaluation methodology has been designed gathering the information on the mechanical properties of fruits and the loading records of electronic devices. The evaluation system allows to determine the current stage of fruit handling process and machinery.
Resumo:
This paper describes a study and analysis of surface normal-base descriptors for 3D object recognition. Specifically, we evaluate the behaviour of descriptors in the recognition process using virtual models of objects created from CAD software. Later, we test them in real scenes using synthetic objects created with a 3D printer from the virtual models. In both cases, the same virtual models are used on the matching process to find similarity. The difference between both experiments is in the type of views used in the tests. Our analysis evaluates three subjects: the effectiveness of 3D descriptors depending on the viewpoint of camera, the geometry complexity of the model and the runtime used to do the recognition process and the success rate to recognize a view of object among the models saved in the database.
Resumo:
Statistical machine translation (SMT) is an approach to Machine Translation (MT) that uses statistical models whose parameter estimation is based on the analysis of existing human translations (contained in bilingual corpora). From a translation student’s standpoint, this dissertation aims to explain how a phrase-based SMT system works, to determine the role of the statistical models it uses in the translation process and to assess the quality of the translations provided that system is trained with in-domain goodquality corpora. To that end, a phrase-based SMT system based on Moses has been trained and subsequently used for the English to Spanish translation of two texts related in topic to the training data. Finally, the quality of this output texts produced by the system has been assessed through a quantitative evaluation carried out with three different automatic evaluation measures and a qualitative evaluation based on the Multidimensional Quality Metrics (MQM).
Resumo:
"February 1979."
Resumo:
"Monitored by Coastal Engineering Research Center, US Army Engineer Waterways Experiment Station."
Resumo:
"December 1980."
Resumo:
Transportation Department, Office of the Assistant Secretary for Systems Development and Technology, Washington, D.C.
Resumo:
"October 1978."
Resumo:
Mode of access: Internet.