947 resultados para Estimation methods


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A number of authors concerned with the analysis of rock jointing have used the idea that the joint areal or diametral distribution can be linked to the trace length distribution through a theorem attributed to Crofton. This brief paper seeks to demonstrate why Crofton's theorem need not be used to link moments of the trace length distribution captured by scan line or areal mapping to the moments of the diametral distribution of joints represented as disks and that it is incorrect to do so. The valid relationships for areal or scan line mapping between all the moments of the trace length distribution and those of the joint size distribution for joints modeled as disks are recalled and compared with those that might be applied were Crofton's theorem assumed to apply. For areal mapping, the relationship is fortuitously correct but incorrect for scan line mapping.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Detailed knowledge on water percolation into the soil in irrigated areas is fundamental for solving problems of drainage, pollution and the recharge of underground aquifers. The aim of this study was to evaluate the percolation estimated by time-domain-reflectometry (TDR) in a drainage lysimeter. We used Darcy's law with K(θ) functions determined by field and laboratory methods and by the change in water storage in the soil profile at 16 points of moisture measurement at different time intervals. A sandy clay soil was saturated and covered with plastic sheet to prevent evaporation and an internal drainage trial in a drainage lysimeter was installed. The relationship between the observed and estimated percolation values was evaluated by linear regression analysis. The results suggest that percolation in the field or laboratory can be estimated based on continuous monitoring with TDR, and at short time intervals, of the variations in soil water storage. The precision and accuracy of this approach are similar to those of the lysimeter and it has advantages over the other evaluated methods, of which the most relevant are the possibility of estimating percolation in short time intervals and exemption from the predetermination of soil hydraulic properties such as water retention and hydraulic conductivity. The estimates obtained by the Darcy-Buckingham equation for percolation levels using function K(θ) predicted by the method of Hillel et al. (1972) provided compatible water percolation estimates with those obtained in the lysimeter at time intervals greater than 1 h. The methods of Libardi et al. (1980), Sisson et al. (1980) and van Genuchten (1980) underestimated water percolation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As a thorough aggregation of probability and graph theory, Bayesian networks currently enjoy widespread interest as a means for studying factors that affect the coherent evaluation of scientific evidence in forensic science. Paper I of this series of papers intends to contribute to the discussion of Bayesian networks as a framework that is helpful for both illustrating and implementing statistical procedures that are commonly employed for the study of uncertainties (e.g. the estimation of unknown quantities). While the respective statistical procedures are widely described in literature, the primary aim of this paper is to offer an essentially non-technical introduction on how interested readers may use these analytical approaches - with the help of Bayesian networks - for processing their own forensic science data. Attention is mainly drawn to the structure and underlying rationale of a series of basic and context-independent network fragments that users may incorporate as building blocs while constructing larger inference models. As an example of how this may be done, the proposed concepts will be used in a second paper (Part II) for specifying graphical probability networks whose purpose is to assist forensic scientists in the evaluation of scientific evidence encountered in the context of forensic document examination (i.e. results of the analysis of black toners present on printed or copied documents).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Yksi keskeisimmistä tehtävistä matemaattisten mallien tilastollisessa analyysissä on mallien tuntemattomien parametrien estimointi. Tässä diplomityössä ollaan kiinnostuneita tuntemattomien parametrien jakaumista ja niiden muodostamiseen sopivista numeerisista menetelmistä, etenkin tapauksissa, joissa malli on epälineaarinen parametrien suhteen. Erilaisten numeeristen menetelmien osalta pääpaino on Markovin ketju Monte Carlo -menetelmissä (MCMC). Nämä laskentaintensiiviset menetelmät ovat viime aikoina kasvattaneet suosiotaan lähinnä kasvaneen laskentatehon vuoksi. Sekä Markovin ketjujen että Monte Carlo -simuloinnin teoriaa on esitelty työssä siinä määrin, että menetelmien toimivuus saadaan perusteltua. Viime aikoina kehitetyistä menetelmistä tarkastellaan etenkin adaptiivisia MCMC menetelmiä. Työn lähestymistapa on käytännönläheinen ja erilaisia MCMC -menetelmien toteutukseen liittyviä asioita korostetaan. Työn empiirisessä osuudessa tarkastellaan viiden esimerkkimallin tuntemattomien parametrien jakaumaa käyttäen hyväksi teoriaosassa esitettyjä menetelmiä. Mallit kuvaavat kemiallisia reaktioita ja kuvataan tavallisina differentiaaliyhtälöryhminä. Mallit on kerätty kemisteiltä Lappeenrannan teknillisestä yliopistosta ja Åbo Akademista, Turusta.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this work was to develop and validate simple, accurate and precise spectroscopic methods (multicomponent, dual wavelength and simultaneous equations) for the simultaneous estimation and dissolution testing of ofloxacin and ornidazole tablet dosage forms. The medium of dissolution used was 900 ml of 0.01N HCl, using a paddle apparatus at a stirring rate of 50 rpm. The drug release was evaluated by developed and validated spectroscopic methods. Ofloxacin and ornidazole showed 293.4 and 319.6nm as λmax in 0.01N HCl. The methods were validated to meet requirements for a global regulatory filing. The validation included linearity, precision and accuracy. In addition, recovery studies and dissolution studies of three different tablets were compared and the results obtained show no significant difference among products.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mathematical models often contain parameters that need to be calibrated from measured data. The emergence of efficient Markov Chain Monte Carlo (MCMC) methods has made the Bayesian approach a standard tool in quantifying the uncertainty in the parameters. With MCMC, the parameter estimation problem can be solved in a fully statistical manner, and the whole distribution of the parameters can be explored, instead of obtaining point estimates and using, e.g., Gaussian approximations. In this thesis, MCMC methods are applied to parameter estimation problems in chemical reaction engineering, population ecology, and climate modeling. Motivated by the climate model experiments, the methods are developed further to make them more suitable for problems where the model is computationally intensive. After the parameters are estimated, one can start to use the model for various tasks. Two such tasks are studied in this thesis: optimal design of experiments, where the task is to design the next measurements so that the parameter uncertainty is minimized, and model-based optimization, where a model-based quantity, such as the product yield in a chemical reaction model, is optimized. In this thesis, novel ways to perform these tasks are developed, based on the output of MCMC parameter estimation. A separate topic is dynamical state estimation, where the task is to estimate the dynamically changing model state, instead of static parameters. For example, in numerical weather prediction, an estimate of the state of the atmosphere must constantly be updated based on the recently obtained measurements. In this thesis, a novel hybrid state estimation method is developed, which combines elements from deterministic and random sampling methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Machine learning provides tools for automated construction of predictive models in data intensive areas of engineering and science. The family of regularized kernel methods have in the recent years become one of the mainstream approaches to machine learning, due to a number of advantages the methods share. The approach provides theoretically well-founded solutions to the problems of under- and overfitting, allows learning from structured data, and has been empirically demonstrated to yield high predictive performance on a wide range of application domains. Historically, the problems of classification and regression have gained the majority of attention in the field. In this thesis we focus on another type of learning problem, that of learning to rank. In learning to rank, the aim is from a set of past observations to learn a ranking function that can order new objects according to how well they match some underlying criterion of goodness. As an important special case of the setting, we can recover the bipartite ranking problem, corresponding to maximizing the area under the ROC curve (AUC) in binary classification. Ranking applications appear in a large variety of settings, examples encountered in this thesis include document retrieval in web search, recommender systems, information extraction and automated parsing of natural language. We consider the pairwise approach to learning to rank, where ranking models are learned by minimizing the expected probability of ranking any two randomly drawn test examples incorrectly. The development of computationally efficient kernel methods, based on this approach, has in the past proven to be challenging. Moreover, it is not clear what techniques for estimating the predictive performance of learned models are the most reliable in the ranking setting, and how the techniques can be implemented efficiently. The contributions of this thesis are as follows. First, we develop RankRLS, a computationally efficient kernel method for learning to rank, that is based on minimizing a regularized pairwise least-squares loss. In addition to training methods, we introduce a variety of algorithms for tasks such as model selection, multi-output learning, and cross-validation, based on computational shortcuts from matrix algebra. Second, we improve the fastest known training method for the linear version of the RankSVM algorithm, which is one of the most well established methods for learning to rank. Third, we study the combination of the empirical kernel map and reduced set approximation, which allows the large-scale training of kernel machines using linear solvers, and propose computationally efficient solutions to cross-validation when using the approach. Next, we explore the problem of reliable cross-validation when using AUC as a performance criterion, through an extensive simulation study. We demonstrate that the proposed leave-pair-out cross-validation approach leads to more reliable performance estimation than commonly used alternative approaches. Finally, we present a case study on applying machine learning to information extraction from biomedical literature, which combines several of the approaches considered in the thesis. The thesis is divided into two parts. Part I provides the background for the research work and summarizes the most central results, Part II consists of the five original research articles that are the main contribution of this thesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The state of Ceará, Brazil, has 75% of its area covered by Brazilian semiarid, with its peculiar features. In this state, the dams are constituted in water structure of strategic importance, ensuring, both in time and space, the development and supply of water to population. However, construction of reservoirs results in various impacts that should be carefully observed when deciding on their implementation. One of the impacts identified as negative is the increased evaporation, which constitutes a major component of water balance in reservoirs, especially in arid regions. Several methods for estimating evaporation have been proposed over time, many of them deriving from the Penman equation. This study evaluated six different methods for estimating evaporation in order to determine the most suitable for use in hydrological models for water balance in reservoirs in the state of Ceará. The tested methods were proposed by Penman, Kohler-Nordenson-Fox, Priestley-Taylor, deBruim-Keijman, Brutsaert-Stricker and deBruim. The methods presented good performance when tested for water balance during the dry season, and the Priestley-Taylor was the most appropriate, since the data from de simulated water balance with evaporation estimated by this method were the closest of the water balance data observed from measures of reservoir level and the elevation-volume curve provided by the Company of Management of Water Resources of the state of Ceará - COGERH.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this work is to apply approximate Bayesian computation in combination with Marcov chain Monte Carlo methods in order to estimate the parameters of tuberculosis transmission. The methods are applied to San Francisco data and the results are compared with the outcomes of previous works. Moreover, a methodological idea with the aim to reduce computational time is also described. Despite the fact that this approach is proved to work in an appropriate way, further analysis is needed to understand and test its behaviour in different cases. Some related suggestions to its further enhancement are described in the corresponding chapter.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nowadays the energy efficiency has become one of the most concerned topics. Compressors are the equipment, which is very common in industry. Moreover, they tend to operate during long cycles and therefore even small decrease in power consumption can significantly reduce electricity costs during the year. And therefore it is important to investigate ways of increasing the energy efficiency of the compressors. In the thesis rotary screw compressor alongside with different control approaches is described. Simulation models for various control types of rotary screw compressor are developed. Analysis of laboratory equipment is conducted and results are compared with simulation. Suggestions of the real laboratory equipment improvement are given.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nesse artigo, tem-se o interesse em avaliar diferentes estratégias de estimação de parâmetros para um modelo de regressão linear múltipla. Para a estimação dos parâmetros do modelo foram utilizados dados de um ensaio clínico em que o interesse foi verificar se o ensaio mecânico da propriedade de força máxima (EM-FM) está associada com a massa femoral, com o diâmetro femoral e com o grupo experimental de ratas ovariectomizadas da raça Rattus norvegicus albinus, variedade Wistar. Para a estimação dos parâmetros do modelo serão comparadas três metodologias: a metodologia clássica, baseada no método dos mínimos quadrados; a metodologia Bayesiana, baseada no teorema de Bayes; e o método Bootstrap, baseado em processos de reamostragem.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

O desenvolvimento de projetos relacionados ao desempenho de diversas culturas tem recebido aperfeiçoamento cada vez maior, incorporado a modelos matemáticos sendo indispensável à utilização de equações cada vez mais consistentes que possibilitem previsão e maior aproximação do comportamento real, diminuindo o erro na obtenção das estimativas. Entre as operações unitárias que demandam maior estudo estão aquelas relacionadas com o crescimento da cultura, caracterizadas pela temperatura ideal para o acréscimo de matéria seca. Pelo amplo uso dos métodos matemáticos na representação, análise e obtenção de estimativas de graus-dia, juntamente com a grande importância que a cultura da cana-de-açúcar tem para a economia brasileira, foi realizada uma avaliação dos modelos matemáticos comumente usados e dos métodos numéricos de integração na estimativa da disponibilidade de graus-dia para essa cultura, na região de Botucatu, Estado de São Paulo. Os modelos de integração, com discretização de 6 em 6 h, apresentaram resultados satisfatórios na estimativa de graus-dia. As metodologias tradicionais apresentaram desempenhos satisfatórios quanto à estimativa de grausdia com base na curva de temperatura horária para cada dia e para os agrupamentos de três, sete, 15 e 30 dias. Pelo método numérico de integração, a região de Botucatu, Estado de São Paulo, apresentou disponibilidade térmica anual média de 1.070,6 GD para a cultura da cana-de-açúcar.