974 resultados para Estimate model
Resumo:
Maincrop potato yields in Scotland have increased by 3035 similar to t similar to ha-1 since 1960 as a result of many changes, but has changing climate contributed anything to this? The purpose of this work was to answer this question. Daily weather data for the period 19602006 were analysed for five locations covering the zones of potato growing on the east coast of Scotland (between 55.213 and 57.646 similar to N) to determine trends in temperature, rainfall and solar radiation. A physiologically based potato yield model was validated using data obtained from a long-term field trial in eastern Scotland and then employed to simulate crop development and potential yield at each of the five sites. Over the 47 similar to years, there were significant increases in annual air and 30 similar to cm soil temperatures (0.27 and 0.30 similar to K similar to decade-1, respectively), but no significant changes in annual precipitation or in the timing of the last frost in spring and the first frost of autumn. There was no evidence of any north to south gradient of warming. Simulated emergence and canopy closure became earlier at all five sites over the period with the advance being greater in the north (3.7 and 3.6 similar to days similar to decade-1, respectively) than the south (0.5 and 0.8 similar to days similar to decade-1, respectively). Potential yield increased with time, generally reflecting the increased duration of the green canopy, at average rates of 2.8 similar to t similar to ha-1 decade-1 for chitted seed (sprouted prior to planting) and 2.5 similar to t similar to ha-1 decade-1 for unchitted seed. The measured warming could contribute potential yield increases of up to 13.2 similar to t similar to ha-1 for chitted potato (range 7.119.3 similar to t similar to ha-1) and 11.5 similar to t similar to ha-1 for unchitted potato (range 7.115.5 similar to t similar to ha-1) equivalent to 3439% of the increased potential yield over the period or 2326% of the increase in actual measured yields.
Resumo:
The potential for spatial dependence in models of voter turnout, although plausible from a theoretical perspective, has not been adequately addressed in the literature. Using recent advances in Bayesian computation, we formulate and estimate the previously unutilized spatial Durbin error model and apply this model to the question of whether spillovers and unobserved spatial dependence in voter turnout matters from an empirical perspective. Formal Bayesian model comparison techniques are employed to compare the normal linear model, the spatially lagged X model (SLX), the spatial Durbin model, and the spatial Durbin error model. The results overwhelmingly support the spatial Durbin error model as the appropriate empirical model.
Resumo:
Meteorological (met) station data is used as the basis for a number of influential studies into the impacts of the variability of renewable resources. Real turbine output data is not often easy to acquire, whereas meteorological wind data, supplied at a standardised height of 10 m, is widely available. This data can be extrapolated to a standard turbine height using the wind profile power law and used to simulate the hypothetical power output of a turbine. Utilising a number of met sites in such a manner can develop a model of future wind generation output. However, the accuracy of this extrapolation is strongly dependent on the choice of the wind shear exponent alpha. This paper investigates the accuracy of the simulated generation output compared to reality using a wind farm in North Rhins, Scotland and a nearby met station in West Freugh. The results show that while a single annual average value for alpha may be selected to accurately represent the long term energy generation from a simulated wind farm, there are significant differences between simulation and reality on an hourly power generation basis, with implications for understanding the impact of variability of renewables on short timescales, particularly system balancing and the way that conventional generation may be asked to respond to a high level of variable renewable generation on the grid in the future.
Resumo:
Global flood hazard maps can be used in the assessment of flood risk in a number of different applications, including (re)insurance and large scale flood preparedness. Such global hazard maps can be generated using large scale physically based models of rainfall-runoff and river routing, when used in conjunction with a number of post-processing methods. In this study, the European Centre for Medium Range Weather Forecasts (ECMWF) land surface model is coupled to ERA-Interim reanalysis meteorological forcing data, and resultant runoff is passed to a river routing algorithm which simulates floodplains and flood flow across the global land area. The global hazard map is based on a 30 yr (1979–2010) simulation period. A Gumbel distribution is fitted to the annual maxima flows to derive a number of flood return periods. The return periods are calculated initially for a 25×25 km grid, which is then reprojected onto a 1×1 km grid to derive maps of higher resolution and estimate flooded fractional area for the individual 25×25 km cells. Several global and regional maps of flood return periods ranging from 2 to 500 yr are presented. The results compare reasonably to a benchmark data set of global flood hazard. The developed methodology can be applied to other datasets on a global or regional scale.
Resumo:
During winter the ocean surface in polar regions freezes over to form sea ice. In the summer the upper layers of sea ice and snow melts producing meltwater that accumulates in Arctic melt ponds on the surface of sea ice. An accurate estimate of the fraction of the sea ice surface covered in melt ponds is essential for a realistic estimate of the albedo for global climate models. We present a melt-pond–sea-ice model that simulates the three-dimensional evolution of melt ponds on an Arctic sea ice surface. The advancements of this model compared to previous models are the inclusion of snow topography; meltwater transport rates are calculated from hydraulic gradients and ice permeability; and the incorporation of a detailed one-dimensional, thermodynamic radiative balance. Results of model runs simulating first-year and multiyear sea ice are presented. Model results show good agreement with observations, with duration of pond coverage, pond area, and ice ablation comparing well for both the first-year ice and multiyear ice cases. We investigate the sensitivity of the melt pond cover to changes in ice topography, snow topography, and vertical ice permeability. Snow was found to have an important impact mainly at the start of the melt season, whereas initial ice topography strongly controlled pond size and pond fraction throughout the melt season. A reduction in ice permeability allowed surface flooding of relatively flat, first-year ice but had little impact on the pond coverage of rougher, multiyear ice. We discuss our results, including model shortcomings and areas of experimental uncertainty.
Resumo:
Climate models predict a large range of possible future temperatures for a particular scenario of future emissions of greenhouse gases and other anthropogenic forcings of climate. Given that further warming in coming decades could threaten increasing risks of climatic disruption, it is important to determine whether model projections are consistent with temperature changes already observed. This can be achieved by quantifying the extent to which increases in well mixed greenhouse gases and changes in other anthropogenic and natural forcings have already altered temperature patterns around the globe. Here, for the first time, we combine multiple climate models into a single synthesized estimate of future warming rates consistent with past temperature changes. We show that the observed evolution of near-surface temperatures appears to indicate lower ranges (5–95%) for warming (0.35–0.82 K and 0.45–0.93 K by the 2020s (2020–9) relative to 1986–2005 under the RCP4.5 and 8.5 scenarios respectively) than the equivalent ranges projected by the CMIP5 climate models (0.48–1.00 K and 0.51–1.16 K respectively). Our results indicate that for each RCP the upper end of the range of CMIP5 climate model projections is inconsistent with past warming.
Resumo:
A necessary condition for a good probabilistic forecast is that the forecast system is shown to be reliable: forecast probabilities should equal observed probabilities verified over a large number of cases. As climate change trends are now emerging from the natural variability, we can apply this concept to climate predictions and compute the reliability of simulated local and regional temperature and precipitation trends (1950–2011) in a recent multi-model ensemble of climate model simulations prepared for the Intergovernmental Panel on Climate Change (IPCC) fifth assessment report (AR5). With only a single verification time, the verification is over the spatial dimension. The local temperature trends appear to be reliable. However, when the global mean climate response is factored out, the ensemble is overconfident: the observed trend is outside the range of modelled trends in many more regions than would be expected by the model estimate of natural variability and model spread. Precipitation trends are overconfident for all trend definitions. This implies that for near-term local climate forecasts the CMIP5 ensemble cannot simply be used as a reliable probabilistic forecast.
Resumo:
High-resolution simulations with a mesoscale model are performed to estimate heat and moisture budgets of a well-mixed boundary layer. The model budgets are validated against energy budgets obtained from airborne measurements over heterogeneous terrain in Western Germany. Time rate of change, vertical divergence, and horizontal advection for an atmospheric column of air are estimated. Results show that the time trend of specific humidity exhibits some deficiencies, while the potential temperature trend is matched accurately. Furthermore, the simulated turbulent surface fluxes of sensible and latent heat are comparable to the measured fluxes, leading to similar values of the vertical divergence. The analysis of different horizontal model resolutions exhibits improved surface fluxes with increased resolution, a fact attributed to a reduced aggregation effect. Scale-interaction effects could be identified: while time trends and advection are strongly influenced by mesoscale forcing, the turbulent surface fluxes are mainly controlled by microscale processes.
Assessment of the Wind Gust Estimate Method in mesoscale modelling of storm events over West Germany
Resumo:
A physically based gust parameterisation is added to the atmospheric mesoscale model FOOT3DK to estimate wind gusts associated with storms over West Germany. The gust parameterisation follows the Wind Gust Estimate (WGE) method and its functionality is verified in this study. The method assumes that gusts occurring at the surface are induced by turbulent eddies in the planetary boundary layer, deflecting air parcels from higher levels down to the surface under suitable conditions. Model simulations are performed with horizontal resolutions of 20 km and 5 km. Ten historical storm events of different characteristics and intensities are chosen in order to include a wide range of typical storms affecting Central Europe. All simulated storms occurred between 1990 and 1998. The accuracy of the method is assessed objectively by validating the simulated wind gusts against data from 16 synoptic stations by means of “quality parameters”. Concerning these parameters, the temporal and spatial evolution of the simulated gusts is well reproduced. Simulated values for low altitude stations agree particularly well with the measured gusts. For orographically exposed locations, the gust speeds are partly underestimated. The absolute maximum gusts lie in most cases within the bounding interval given by the WGE method. Focussing on individual storms, the performance of the method is better for intense and large storms than for weaker ones. Particularly for weaker storms, the gusts are typically overestimated. The results for the sample of ten storms document that the method is generally applicable with the mesoscale model FOOT3DK for mid-latitude winter storms, even in areas with complex orography.
Resumo:
We present a dynamic causal model that can explain context-dependent changes in neural responses, in the rat barrel cortex, to an electrical whisker stimulation at different frequencies. Neural responses were measured in terms of local field potentials. These were converted into current source density (CSD) data, and the time series of the CSD sink was extracted to provide a time series response train. The model structure consists of three layers (approximating the responses from the brain stem to the thalamus and then the barrel cortex), and the latter two layers contain nonlinearly coupled modules of linear second-order dynamic systems. The interaction of these modules forms a nonlinear regulatory system that determines the temporal structure of the neural response amplitude for the thalamic and cortical layers. The model is based on the measured population dynamics of neurons rather than the dynamics of a single neuron and was evaluated against CSD data from experiments with varying stimulation frequency (1–40 Hz), random pulse trains, and awake and anesthetized animals. The model parameters obtained by optimization for different physiological conditions (anesthetized or awake) were significantly different. Following Friston, Mechelli, Turner, and Price (2000), this work is part of a formal mathematical system currently being developed (Zheng et al., 2005) that links stimulation to the blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal through neural activity and hemodynamic variables. The importance of the model described here is that it can be used to invert the hemodynamic measurements of changes in blood flow to estimate the underlying neural activity.
Resumo:
Radiometric data in the visible domain acquired by satellite remote sensing have proven to be powerful for monitoring the states of the ocean, both physical and biological. With the help of these data it is possible to understand certain variations in biological responses of marine phytoplankton on ecological time scales. Here, we implement a sequential data-assimilation technique to estimate from a conventional nutrient–phytoplankton–zooplankton (NPZ) model the time variations of observed and unobserved variables. In addition, we estimate the time evolution of two biological parameters, namely, the specific growth rate and specific mortality of phytoplankton. Our study demonstrates that: (i) the series of time-varying estimates of specific growth rate obtained by sequential data assimilation improves the fitting of the NPZ model to the satellite-derived time series: the model trajectories are closer to the observations than those obtained by implementing static values of the parameter; (ii) the estimates of unobserved variables, i.e., nutrient and zooplankton, obtained from an NPZ model by implementation of a pre-defined parameter evolution can be different from those obtained on applying the sequences of parameters estimated by assimilation; and (iii) the maximum estimated specific growth rate of phytoplankton in the study area is more sensitive to the sea-surface temperature than would be predicted by temperature-dependent functions reported previously. The overall results of the study are potentially useful for enhancing our understanding of the biological response of phytoplankton in a changing environment.
Resumo:
We propose a new sparse model construction method aimed at maximizing a model’s generalisation capability for a large class of linear-in-the-parameters models. The coordinate descent optimization algorithm is employed with a modified l1- penalized least squares cost function in order to estimate a single parameter and its regularization parameter simultaneously based on the leave one out mean square error (LOOMSE). Our original contribution is to derive a closed form of optimal LOOMSE regularization parameter for a single term model, for which we show that the LOOMSE can be analytically computed without actually splitting the data set leading to a very simple parameter estimation method. We then integrate the new results within the coordinate descent optimization algorithm to update model parameters one at the time for linear-in-the-parameters models. Consequently a fully automated procedure is achieved without resort to any other validation data set for iterative model evaluation. Illustrative examples are included to demonstrate the effectiveness of the new approaches.
Resumo:
The observation-error covariance matrix used in data assimilation contains contributions from instrument errors, representativity errors and errors introduced by the approximated observation operator. Forward model errors arise when the observation operator does not correctly model the observations or when observations can resolve spatial scales that the model cannot. Previous work to estimate the observation-error covariance matrix for particular observing instruments has shown that it contains signifcant correlations. In particular, correlations for humidity data are more significant than those for temperature. However it is not known what proportion of these correlations can be attributed to the representativity errors. In this article we apply an existing method for calculating representativity error, previously applied to an idealised system, to NWP data. We calculate horizontal errors of representativity for temperature and humidity using data from the Met Office high-resolution UK variable resolution model. Our results show that errors of representativity are correlated and more significant for specific humidity than temperature. We also find that representativity error varies with height. This suggests that the assimilation scheme may be improved if these errors are explicitly included in a data assimilation scheme. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.
Resumo:
Since the advent of wide-angle imaging of the inner heliosphere, a plethora of techniques have been developed to investigate the three-dimensional structure and kinematics of solar wind transients, such as coronal mass ejections, from their signatures in single- and multi-spacecraft imaging observations. These techniques, which range from the highly complex and computationally intensive to methods based on simple curve fitting, all have their inherent advantages and limitations. In the analysis of single-spacecraft imaging observations, much use has been made of the fixed φ fitting (FPF) and harmonic mean fitting (HMF) techniques, in which the solar wind transient is considered to be a radially propagating point source (fixed φ, FP, model) and a radially expanding circle anchored at Sun centre (harmonic mean, HM, model), respectively. Initially, we compare the radial speeds and propagation directions derived from application of the FPF and HMF techniques to a large set of STEREO/Heliospheric Imager (HI) observations. As the geometries on which these two techniques are founded constitute extreme descriptions of solar wind transients in terms of their extent along the line of sight, we describe a single-spacecraft fitting technique based on a more generalized model for which the FP and HM geometries form the limiting cases. In addition to providing estimates of a transient’s speed and propagation direction, the self-similar expansion fitting (SSEF) technique provides, in theory, the capability to estimate the transient’s angular extent in the plane orthogonal to the field of view. Using the HI observations, and also by performing a Monte Carlo simulation, we assess the potential of the SSEF technique.
Resumo:
The Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP) was created to evaluate our present ability to simulate large-scale wetland characteristics and corresponding methane (CH4) emissions. A multi-model comparison is essential to evaluate the key uncertainties in the mechanisms and parameters leading to methane emissions. Ten modelling groups joined WETCHIMP to run eight global and two regional models with a common experimental protocol using the same climate and atmospheric carbon dioxide (CO2) forcing datasets. We reported the main conclusions from the intercomparison effort in a companion paper (Melton et al., 2013). Here we provide technical details for the six experiments, which included an equilibrium, a transient, and an optimized run plus three sensitivity experiments (temperature, precipitation, and atmospheric CO2 concentration). The diversity of approaches used by the models is summarized through a series of conceptual figures, and is used to evaluate the wide range of wetland extent and CH4 fluxes predicted by the models in the equilibrium run. We discuss relationships among the various approaches and patterns in consistencies of these model predictions. Within this group of models, there are three broad classes of methods used to estimate wetland extent: prescribed based on wetland distribution maps, prognostic relationships between hydrological states based on satellite observations, and explicit hydrological mass balances. A larger variety of approaches was used to estimate the net CH4 fluxes from wetland systems. Even though modelling of wetland extent and CH4 emissions has progressed significantly over recent decades, large uncertainties still exist when estimating CH4 emissions: there is little consensus on model structure or complexity due to knowledge gaps, different aims of the models, and the range of temporal and spatial resolutions of the models.