994 resultados para Essaie Microscopic Observation Drug-Susceptibility
Resumo:
Objective: Aspergillus species are the main pathogens causing invasive fungal infections but the prevalence of other mould species is rising. Resistance to antifungals among these new emerging pathogens presents a challenge for managing of infections. Conventional susceptibility testing of non-Aspergillus species is laborious and often difficult to interpret. We evaluated a new method for real-time susceptibility testing of moulds based on their of growth-related heat production.Methods: Laboratory and clinical strains of Mucor spp. (n = 4), Scedoporium spp. (n = 4) and Fusarium spp. (n = 5) were used. Conventional MIC was determined by microbroth dilution. Isothermal microcalorimetry was performed at 37 C using Sabouraud dextrose broth (SDB) inoculated with 104 spores/ml (determined by microscopical enumeration). SDB without antifungals was used for evaluation of growth characteristics. Detection time was defined as heat flow exceeding 10 lW. For susceptibility testing serial dilutions of amphotericin B, voriconazole, posaconazole and caspofungin were used. The minimal heat inhibitory concentration (MHIC) was defined as the lowest antifungal concentration, inhbiting 50% of the heat produced by the growth control at 48 h or at 24 h for Mucor spp. Susceptibility tests were performed in duplicate.Results: Tested mould genera had distinctive heat flow profiles with a median detection time (range) of 3.4 h (1.9-4.1 h) for Mucor spp, 11.0 h (7.1-13.7 h) for Fusarium spp and 29.3 h (27.4-33.0 h) for Scedosporium spp. Graph shows heat flow (in duplicate) of one representative strain from each genus (dashed line marks detection limit). Species belonging to the same genus showed similar heat production profiles. Table shows MHIC and MIC ranges for tested moulds and antifungals.Conclusions: Microcalorimetry allowed rapid detection of growth of slow-growing species, such as Fusarium spp. and Scedosporium spp. Moreover, microcalorimetry offers a new approach for antifungal susceptibility testing of moulds, correlating with conventional MIC values. Interpretation of calorimetric susceptibility data is easy and real-time data on the effect of different antifungals on the growth of the moulds is additionally obtained. This method may be used for investigation of different mechanisms of action of antifungals, new substances and drug-drug combinations.
Resumo:
The aim of this study was to evaluate the susceptibility of 35 resistant Pseudomonas aeruginosa clinical isolates to a quaternary ammonium hospital disinfectant. The methodology was the AOAC Use-Dilution Test, with disinfectant at its use-concentration. In addition, the chromosomal DNA profile of the isolates were determined by macro-restriction pulsed field gel electrophoresis (PFGE) method aiming to verify the relatedness among them and the behavior of isolates from the same group regarding the susceptibility to the disinfectant. Seventy one percent of the isolates were multiresistant to antibiotics and 43% showed a reduced susceptibility to the disinfectant. The PFGE methodology detected 18 major clonal groups. We found isolates with reduced susceptibility to the disinfectant and we think that these are worrying data that should be further investigated including different organisms and chemical agents in order to demonstrate that microorganisms can be destroyed by biocide as necessary. We also found strains of the same clonal groups showing different susceptibility to the disinfectant. This is an interesting observation considering that only few works are available about this subject. PFGE profile seems not to be a reliable marker for resistance to disinfectants.
Resumo:
The antimicrobial susceptibility of 176 unusual non-fermentative gram-negative bacilli (NF-GNB) collected from Latin America region through the SENTRY Program between 1997 and 2002 was evaluated by broth microdilution according to the National Committee for Clinical Laboratory Standards (NCCLS) recommendations. Nearly 74% of the NF-BGN belonged to the following genera/species: Burkholderia spp. (83), Achromobacter spp. (25), Ralstonia pickettii (16), Alcaligenes spp. (12), and Cryseobacterium spp. (12). Generally, trimethoprim/sulfamethoxazole (MIC50, < 0.5 µg/ml) was the most potent drug followed by levofloxacin (MIC50, 0.5 µg/ml), and gatifloxacin (MIC50, 1 µg/ml). The highest susceptibility rates were observed for levofloxacin (78.3%), gatifloxacin (75.6%), and meropenem (72.6%). Ceftazidime (MIC50, 4 µg/ml; 83.1% susceptible) was the most active beta-lactam against B. cepacia. Against Achromobacter spp. isolates, meropenem (MIC50, 0.25 µg/ml; 88% susceptible) was more active than imipenem (MIC50, 2 µg/ml). Cefepime (MIC50, 2 µg/ml; 81.3% susceptible), and imipenem (MIC50, 2 µg/ml; 81.3% susceptible) were more active than ceftazidime (MIC50, >16 µg/ml; 18.8% susceptible) and meropenem (MIC50, 8 µg/ml; 50% susceptible) against Ralstonia pickettii. Since selection of the most appropriate antimicrobial agents for testing and reporting has not been established by the NCCLS for many of NF-GNB species, results from large multicenter studies may help to guide the best empiric therapy.
Resumo:
Following a former immunohistochemical study in the rat brain [Arluison, M., Quignon, M., Nguyen, P., Thorens, B., Leloup, C., Penicaud, L. Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain. I. Immunohistochemical study. J. Chem. Neuroanat., in press], we have analyzed the ultrastructural localization of GLUT2 in representative and/or critical areas of the forebrain and hindbrain. In agreement with previous results, we observe few oligodendrocyte and astrocyte cell bodies discretely labeled for GLUT2 in large myelinated fibre bundles and most brain areas examined, whereas the reactive glial processes are more numerous and often localized in the vicinity of nerve terminals and/or dendrites or dendritic spines forming synaptic contacts. Only some of them appear closely bound to unlabeled nerve cell bodies and dendrites. Furthermore, the nerve cell bodies prominently immunostained for GLUT2 are scarce in the brain nuclei examined, whereas the labeled dendrites and dendritic spines are relatively numerous and frequently engaged in synaptic junctions. In conformity with the observation of GLUT2-immunoreactive rings at the periphery of numerous nerve cell bodies in various brain areas (see previous paper), we report here that some neuronal perikarya of the dorsal endopiriform nucleus/perirhinal cortex exhibit some patches of immunostaining just below the plasma membrane. However, the presence of many GLUT2-immunoreactive nerve terminals and/or astrocyte processes, some of them being occasionally attached to nerve cell bodies and dendrites, could also explain the pericellular labeling observed. The results here reported support the idea that GLUT2 may be expressed by some cerebral neurones possibly involved in glucose sensing, as previously discussed. However, it is also possible that this transporter participate in the regulation of neurotransmitter release and, perhaps, in the release of glucose by glial cells.
Resumo:
An in-house, low-cost method was developed to determine the genotypic resistance of immunodeficiency virus type 1 (HIV-1) isolates. All 179 Venezuelan isolates analysed belonged to subtype B. Primary drug resistance mutations were found in 11% of 63 treatment-naïve patients. The prevalence of resistance in isolates from 116 HIV-positive patients under antiretroviral treatment was 47% to protease inhibitors, 65% to nucleoside inhibitors and 38% to non-nucleoside inhibitors, respectively. Around 50% of patients in the study harboured viruses with highly reduced susceptibility to the three classical types of drugs after only five years from their initial diagnoses.
Resumo:
Waddlia chondrophila is an emerging cause of miscarriage in bovines and humans. Given the strict intracellular growth of this Chlamydia-like organism, its antibiotic susceptibility was tested by amoebal coculture, cell culture, and real-time PCR. W. chondrophila was susceptible to doxycycline and azithromycin but resistant to beta-lactams and fluoroquinolones.
Resumo:
The opportunistic fungal pathogen Candida glabrata is the second most common isolate from bloodstream infections worldwide and is naturally less susceptible to the antifungal drug fluconazole than other Candida species. C. glabrata is a haploid yeast that contains three mating-type like loci (MTL), although no sexual cycle has been described. Strains containing both types of mating information at the MTL1 locus are found in clinical isolates, but it is thought that strains containing type a information are more common. Here we investigated if a particular combination of mating type information at each MTLlocus is more prevalent in clinical isolates from hospitalized patients in Mexico and if there is a correlation between mating information and resistance to fluconazole and 5-fluorocytosine. We found that while both types of information at MTL1 are equally represented in a collection of 64 clinical isolates, the vast majority of isolates contain a-type information at MTL2 and α-type at MTL3. We also found no correlation of the particular combination of mating type information at the three MTL loci and resistance to fluconazole.
Resumo:
Intravenous drug injection has been reported as the main risk factor for hepatitis C virus (HCV) infection. The aim of the present study was to describe the prevalence and the epidemiological profile of HCV infection among abusers of illegal injected and non-injected drugs in Cuiabá, state of Mato Grosso, Central Brazil. A cross-sectional study including 314 male drug users from eight detoxification centres was performed. Out of 314 subjects studied, 48 (15.2%) were intravenous drug users. Participants were interviewed and had blood samples taken and tested for the presence of anti-HCV antibodies. Positive samples were tested for the presence of HCV RNA. Genotyping was performed on HCV RNA-positive samples. The overall prevalence of anti-HCV antibodies was 6.4% (n = 20). Out of 20 anti-HCV antibody-positive subjects, 16 (80%) were also HCV RNA-positive. Genotype 1 predominated (75%), followed by 3a (25%). Subtype 1a was more common than 1b. HCV infection was more prevalent among intravenous drug users (33%) than non-injecting users (1.5%). Logistic regression analyses showed independent associations between HCV infection and intravenous drug use, imprisonment and increasing age. In the present study, injecting drug use was the factor most strongly associated to HCV infection and inhaling or sniffing did not represent an increased susceptibility to infection.
Resumo:
OBJECTIVE To describe what is, to our knowledge, the first nosocomial outbreak of infection with pan-drug-resistant (including colistin-resistant) Acinetobacter baumannii, to determine the risk factors associated with these types of infections, and to determine their clinical impact. DESIGN Nested case-control cohort study and a clinical-microbiological study. SETTING A 1,521-bed tertiary care university hospital in Seville, Spain. PATIENTS Case patients were inpatients who had a pan-drug-resistant A. baumannii isolate recovered from a clinical or surveillance sample obtained at least 48 hours after admission to an intensive care unit (ICU) during the time of the epidemic outbreak. Control patients were patients who were admitted to any of the "boxes" (ie, rooms that partition off a distinct area for a patient's bed and the equipment needed to care for the patient) of an ICU for at least 48 hours during the time of the epidemic outbreak. RESULTS All the clinical isolates had similar antibiotic susceptibility patterns (ie, they were resistant to all the antibiotics tested, including colistin), and, on the basis of repetitive extragenic palindromic-polymerase chain reaction, it was determined that all of them were of the same clone. The previous use of quinolones and glycopeptides and an ICU stay were associated with the acquisition of infection or colonization with pan-drug-resistant A. baumannii. To control this outbreak, we implemented the following multicomponent intervention program: the performance of environmental decontamination of the ICUs involved, an environmental survey, a revision of cleaning protocols, active surveillance for colonization with pan-drug-resistant A. baumannii, educational programs for the staff, and the display of posters that illustrate contact isolation measures and antimicrobial use recommendations. CONCLUSIONS We were not able to identify the common source for these cases of infection, but the adopted measures have proven to be effective at controlling the outbreak.
Resumo:
The human immunodeficiency virus type 1 (HIV-1) protease mutation D30N is exclusively selected by the protease inhibitor (PI) nelfinavir and confers resistance to this drug. We demonstrate that D30N increases the susceptibility to saquinavir (SQV) and amprenavir in HIV-1 subtype B isolates and that the N88D mutation in a D30N background neutralizes this effect. D30N also suppresses indinavir (IDV) resistance caused by the M46I mutation. Interestingly, in patients with viruses originally containing the D30N mutation who were treated with IDV or SQV, the virus either reversed this mutation or acquired N88D, suggesting an antagonistic effect of D30N upon exposure to these PIs. These findings can improve direct salvage drug treatment in resource limited countries where subtype B is epidemiologically important and extend the value of first and second line PIs in these populations.
Resumo:
Isoniazid (INH), one of the most important drugs used in antituberculosis (anti-TB) treatment, is also the major drug involved in hepatotoxicity. Differences in INH-induced toxicity have been attributed to genetic variability at several loci, such as NAT2, CYP2E1, GSTM1 and GSTT1, that code for drug-metabolising enzymes. Our goal was to examine the polymorphisms in these enzymes as susceptibility factors to anti-TB drug-induced hepatitis in Brazilian individuals. In a case-control design, 167 unrelated active tuberculosis patients from the University Hospital of the Federal University of Rio de Janeiro, Brazil, were enrolled in this study. Patients with a history of anti-TB drug-induced acute hepatitis (cases with an increase to 3 times the upper limit of normal serum transaminases and symptoms of hepatitis) and patients with no evidence of anti-TB hepatic side effects (controls) were genotyped for NAT2, CYP2E1, GSTM1 and GSTT1 polymorphisms. Slow acetylators had a higher incidence of hepatitis than intermediate/rapid acetylators [22% (18/82) vs. 9.8% (6/61), odds ratio (OR), 2.86, 95% confidence interval (CI), 1.06-7.68, p = 0.04). Logistic regression showed that slow acetylation status was the only independent risk factor (OR 3.59, 95% CI, 2.53-4.64, p = 0.02) for the occurrence of anti-TB drug-induced hepatitis during anti-TB treatment with INH-containing schemes in Brazilian individuals.
Resumo:
Despite stringent requirements for drug development imposed by regulatory agencies, drug-induced liver injury (DILI) is an increasing health problem and a significant cause for failure to approve drugs, market withdrawal of commercialized medications, and adoption of regulatory measures. The pathogenesis is yet undefined, though the rare occurrence of idiosyncratic DILI (1/100,000–1/10,000) and the fact that hepatotoxicity often recurs after re-exposure to the culprit drug under different environmental conditions strongly points toward a major role for genetic variations in the underlying mechanism and susceptibility. Pharmacogenetic studies in DILI have to a large extent focused on genes involved in drug metabolism, as polymorphisms in these genes may generate increased plasma drug concentrations as well as lower clearance rates when treated with standard medication doses. A range of studies have identified a number of genetic variants in drug metabolism Phase I, II, and III genes, including cytochrome P450 (CYP) 2E1, N-acetyltransferase 2, UDP-glucuronosyltransferase 2B7, glutathione S-transferase M1/T1, ABCB11, and ABCC2, that enhance DILI susceptibility (Andrade et al., 2009; Agundez et al., 2011). Several metabolic gene variants, such as CYP2E1c1 and NAT2 slow, have been associated with DILI induced by specific drugs based on individual drug metabolism information. Others, such as GSTM1 and T1 null alleles have been associated with enhanced risk of DILI development induced by a large range of drugs. Hence, these variants appear to have a more general role in DILI susceptibility due to their role in reducing the cell's antioxidative capacity (Lucena et al., 2008). Mitochondrial superoxide dismutase (SOD2) and glutathione peroxidase 1 (GPX1) are two additional enzymes involved in combating oxidative stress, with specific genetic variants shown to enhance the risk of developing DILI
Resumo:
Artemisinin is the active antimalarial compound obtained from the leaves of Artemisia annua L. Artemisinin, and its semi-synthetic derivatives, are the main drugs used to treat multi-drug-resistant Plasmodium falciparum (one of the human malaria parasite species). The in vitro susceptibility of P. falciparum K1 and 3d7 strains and field isolates from the state of Amazonas, Brazil, to A. annua infusions (5 g dry leaves in 1 L of boiling water) and the drug standards chloroquine, quinine and artemisinin were evaluated. The A. annua used was cultivated in three Amazon ecosystems (várzea, terra preta de índio and terra firme) and in the city of Paulínia, state of São Paulo, Brazil. Artemisinin levels in the A. annua leaves used were 0.90-1.13% (m/m). The concentration of artemisinin in the infusions was 40-46 mg/L. Field P. falciparum isolates were resistant to chloroquine and sensitive to quinine and artemisinin. The average 50% inhibition concentration values for A. annua infusions against field isolates were 0.11-0.14 μL/mL (these infusions exhibited artemisinin concentrations of 4.7-5.6 ng/mL) and were active in vitro against P. falciparum due to their artemisinin concentration. No synergistic effect was observed for artemisinin in the infusions.
Resumo:
We analysed 16 variable number tandem repeats (VNTR) and three single-nucleotide polymorphisms (SNP) in Mycobacterium leprae present on 115 Ziehl-Neelsen (Z-N)-stained slides and in 51 skin biopsy samples derived from leprosy patients from Ceará (n = 23), Pernambuco (n = 41), Rio de Janeiro (n = 22) and Rondônia (RO) (n = 78). All skin biopsies yielded SNP-based genotypes, while 48 of the samples (94.1%) yielded complete VNTR genotypes. We evaluated two procedures for extracting M. leprae DNA from Z-N-stained slides: the first including Chelex and the other combining proteinase and sodium dodecyl sulfate. Of the 76 samples processed using the first procedure, 30.2% were positive for 16 or 15 VNTRs, whereas of the 39 samples processed using the second procedure, 28.2% yielded genotypes defined by at least 10 VNTRs. Combined VNTR and SNP analysis revealed large variability in genotypes, but a high prevalence of SNP genotype 4 in the Northeast Region of Brazil. Our observation of two samples from RO with an identical genotype and seven groups with similar genotypes, including four derived from residents of the same state or region, suggest a tendency to form groups according to the origin of the isolates. This study demonstrates the existence of geographically related M. leprae genotypes and that Z-N-stained slides are an alternative source for M. leprae genotyping.
Resumo:
ABSTRACT :Azole antifungal drugs possess fungistatic activity in Candida albicans making this human pathogen tolerant to these agents. The conversion of azoles into fungicidal agents is of interest since their fungistatic properties increase the ability of C. albicans to develop drug resistance. In C. albicans, the phosphatase calcineurin (calcineurin) is essential for antifungal drug tolerance. Up to now, the only known target of calcineurin is Crzl, which is a transcription factor (TF) involved in responses to ionic stress. Thus, most of the components of the calcineurin signaling remain to be identified in C. albicans.In this work, the calcineurin pathway was investigated in order to i) characterize the role of calcineurin in the biology of C. albicans, ii) identify putative targets of calcineurin and iii) characterize the phenomenon of tolerance to antifungal drugs. Towards these aims, four different approaches were used.First, using C. albicans microarrays, an attempt was made to identify a set of calcineurindependent genes (CDGs). Since CDGs were highly dependent upon the external stimulus used to activate calcineurin (Ca2+ or terbinafine), this stimulus bias was bypassed by the construction of strains expressing a truncated autoactive form of calcineurin (Cmp1tr) in a doxycyclinedependent manner. The characterization of Cmpltr was undertaken and results showed that it mimicked awild-type activated calcineurin for all tested phenotypes (i.e. Cnbl-dependence, inhibition by FK506, phosphatase 2B activity, ability to dephosphorylate Crzl and to regulate Crz1-and calcineurin-dependent genes, role in antifungal drug tolerance and susceptibility, role in colony formation on Spider agar). Cmp1tr was therefore considered as a valid tool to study the calcineurin signaling pathway. In silico analysis of CDGs allowed the identification of i) a significant overlap between CDGs and genes regulated by the Cyrl signalíng pathway, ii) putative interactions between calcineurin activation and cell wall reorganization and phospholipid transport, iii) a putative interactión between calcineurin and the regulation of translation and iv) a putative relation between calcineurin and proteasome regulation. Further in silico analyses of the promoters of Crz1-independent CDGs were performed to identify TFs (other than Crz1) that were likely to regulate CDGs and therefore to be a direct target of calcineurin. The analyses revealed that Rpn4 and Mnl1 were TFs likely to be regulated by calcineurin.Second, in order to better characterize azole tolerance, an attempt was made to i) confirm the role of Hsp90 in fluconazole tolerance with a doxycycline-dependent Hsp90 expression system and ii) assess its calcineurin-dependence. Hsp90 was found to be significantly involved in fluconazole tolerance. However, results were not in agreement with the hypothesis that Hsp90 mediates fluconazole tolerance by the only downstream effector calcineurin. Rather Hsp90 is interacting with numerous components for fluconazole tolerance.Third, a collection of C. albicans TFs mutants were screened for loss of tolerance to terbinafine and fluconazole in order to identify TFs involved in antifungal drug tolerance. Out of the 265 TFs mutants screened, only the upc2Δ/Δ mutant showed a loss of fluconazole and terbinafine tolerance. Interestingly, no relation between Upc2 and calcineurin activity was found. These results suggested that the tolerance to antifungal drugs must not be only considered as a calcineurin-dependent phenomenon in C. albicans.Fourth, using FRCS analyses, an attempt was made to identify putative signs of programmed cell death (PCD) in calcineurin mutant cells upon loss of tolerance to terbinafine. A high proportion of cells died from both RO5-dependent (which is a sign of PCD) and ROS-independent (which is a sign of loss of homeostasis) processes in the calcineurin mutant. While these results suggest that calcineurin represses both loss of homeostasis and PCD, the role of calcineurin in PCD is still an open question.In conclusion, this work allowed i) the identification of several putative calcineurin targets, ii) the discovery of several links between calcineurin and signaling pathways and important biological processes and iii) the identification of novel components of calcineurin-independent mechanisms that participate in tolerance to antifungal drugs in C. albicans.RÉSUME :Les azoles sont des antifongiques qui présentent une activité fongistatique contre Candida albicans et rendent cette levure tolérante à ces agents. La conversion des azoles en agents fongicides est d'intérêts car leurs propriétés fongistatiques favorisent le développement de résistance aux drogues chez C. albicans. La calcineurine (calcineurin) est une phosphatase essentielle pour la tolérance aux antifongiques chez C. albicans. La seule cible connue de la calcineurin est Crz1, un facteur de transcription (FT) impliqué dans la réponse aux stress ionique. Ainsi, la plupart des constituants de la voie de signalisation de la calcineurin restent encore à être identifiés chez C. albicans.Dans ce travail de thèse, la voie de signalisation de la calcineurin a été étudiée de sorte à i) caractériser le rôle de la calcineurin dans la biologie de C. albicans, ii) identifier de nouvelles cibles de la calcineurin et iii) caractériser le phénomène de tolérance aux antifongiques. A ce propos, quatre approches ont été entreprises.Premièrement, des puces à ADN de C. albicans ont été utilisées afin d'identifier les gènes dépendants de la calcineurin (GDCs). Les GDCs étant étroitement dépendants du stimulus utilisé pour activer la calcineurin, le biais «stimulus» a été évité via la construction d'une souche exprimant une forme tronquée et autoactive de la calcineurin (Cmp1tr), en présence de doxycycline. La caractérisation de Cmp1tr a été entreprise et les résultats ont montré qu'elle mimait une calcineurin sauvage et activée pour la plupart des phénotypes testés (i.e. dépendance à Cnb1, inhibition par le FK506, activité phosphatase 2B, déphosphorylation de Crz1 et régulation de gènes dépendant de la calcineurin, rôle dans la tolérance et la susceptibilité aux antifongiques, rôle dans la formation des colonies sur milieu Spider). Cmp1tr a donc été considéré comme un outil pertinent pour l'étude de la voie de signalisation de la calcineurin. Les analyses in silico des GDCs ont permis l'identification i) d'un chevauchement entre les GDCs èt les gènes régulés par la voie de signalisation de Cyrl, ii) d'une interaction entre la calcineurin et la réorganisation de la paroi cellulaire ainsi que le transport des phospholipides, iii) d'une interaction entre calcineurin et la régulation de la traduction et iv) une relation entre la calcineurin et la régulation du protéasome. De plus, une analyse in silico des promoteurs des GDCs avec une régulation indépendante de Crz1 a permis d'identifier deux FTs qui pourraient être des cibles directes de la calcineurin, Rpn4 et Mnll.Deuxièmement, afin de caractériser la tolérance aux azoles, il a été entrepris i) de confirmer le rôle de Hsp90 dans la tolérance au fluconazole en utilisant un système d'expression dépendant de la doxycycline et ii) de caractériser sa dépendance à la calcineurin. Hsp90 a été montré impliqué dans la tolérance aux azoles. Cependant, les résultats n'ont pas corroboré une hypothèse expliquant le rôle d'Hsp90 dans la tolérance aux antifongiques par son unique. interaction avec la calcineurin. Il a été proposé que le rôle d'Hsp90 dans la tolérance aux antifongiques soit dû à ces multiples interactions avec le protéome de C. albicans plutôt que par son interaction avec un partenaire unique.Troisièmement, une collection de mutant pour des FTs de C. albicans a été criblée pour une perte de tolérance au fluconazole ou à la terbinafine, de sorte à identifier les FTs impliqués dans la tolérance aux antifongiques. Sur les 265 FTs passés au crible, seul le mutant upc2Δ/Δ a montré une perte de tolérance au fluconazole et à la terbinafine. Aucune relation n'a été trouvée entre la calcineurin et l'activité d'Upc2. Ces résultats suggèrent que la perte de tolérance aux antifongiques ne doit pas être considérée comme un phénomène exclusivement lié à la voie de signalisation de la calcineurin.Quatrièmement, en utilisant la cytométrie de flux, la présence de signes de mort cellulaire programmée (MCP) a été recherchée lors de la perte de tolérance du mutant calcineurin incubé avec de la terbinafine. Une grande proportion de cellules mortes incluant ou non une production de ROS (un signe de MCP) a été détectée dans le mutant calcineurin. Ces résultats préliminaires suggèrent que la calcineurin réprime autant la perte d'homéostasie qu'elle régule l'entrée en MCP. Cependant d'autres analyses sont nécessaires pour démontrer clairement le rôle de la calcineurin dans la régulation de la MCP.En conclusion, ce travail de thèse a permis i) l'identification de plusieurs cibles possibles de la calcineurine, ii) la découverte de plusieurs interactions entre la calcineurine et d'autres voies de signalisation et processus biologiques importants et iii) de démontrer la présence de voies indépendantes de la calcineurine impliquées dans la tolérance aux antifongiques chez C. albicans.