959 resultados para Er-doped silica glass


Relevância:

100.00% 100.00%

Publicador:

Resumo:

研究了一种新型掺Er^3+碲酸盐玻璃的光谱性质;应用Judd-Ofelt理论计算了碲酸盐玻璃中Er^3+离子的强度参数Ω(Ω2=4.79×10^-20cm^2,Ω4=1.52×10^-20cm^2,Ω6=0.66×10^-20cm^2),计算了离子的自发跃迁概率,荧光分支比;应用McCumber理论计算了Er^3+的受激发射截面(σe=10.40×10^-21cm^2),Er^3+离子^4I13/2→^4I15/2发射谱的荧光半高宽(FWHM=65.5nm)及各能级的荧光寿命(^4I13/2能级为τrad

Relevância:

100.00% 100.00%

Publicador:

Resumo:

研究了氙灯抽运脉宽、输出耦合镜的反射率、铒玻璃工作温度以及工作重复频率对铬镱铒共掺磷酸盐玻璃激光输出能量的影响。结果表明, 对于输出能量, 抽运脉宽为2.3 ms(10%最大幅度间)时较好; 综合考虑激光阈值和斜率效率, 输出耦合镜的反射率为85%时较好。此外, 如同大多数激光介质那样, 铬镱铒共掺磷酸盐玻璃的激光输出能量随铒玻璃工作温度的升高和工作重复频率的增加而降低。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Series of tellurite glasses were prepared by traditional melting method, the glass composition were changed and the different effects of glass modifier oxides(alkali metals and alkaline earth metal oxides) and glass intermediate (Y2O3, GeO2, Nb2O5, WO3) on the optical and spectroscopic properties of Er3+ doped tellurite glass were researched and compared. The infrared transmitting spectra, absorption spectra and fluorescence spectra were tested, the results showed that Nb2O5 and WO3 in the glass act as part of the body's role in the formation of the network, caused the reduction of transmitting range in infrared wavelength, which decrease the transmitting properties of tellurite glass. The introduction of high valence cationic ions, WO3 especially, can increase the FWHM of Er3+ for the increased polarization effect. With the decreasing of cationic field of glass modifier ions, the ion filed of the environment around Er3+ increased, subsequently, the role of ligand field polarization effect reduced, which makes the luminescence lifetime increase, and on the contrary the FWHM decrease monotonously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eu-doped and Eu/Al-codoped high silica glass to investigate the properties of europium ions in high silica glasses were obtained. The porous glasses were immersed into europium nitrate solution or mixed solution of europium nitrate and aluminum nitrate. After dried, the doped porous glasses were sintered at 1200°C to obtain Eu-doped and Eu/Al-codoped high silica glasses. The reduction of Eu3+&rarrEu2+ was observed in Eu/Al-codoped high silica glass. The ratio of trivalent and bivalent europium ions was adjusted by the addition of aluminum ions and then the luminescent color of the glasses was controlled. A detailed mechanism was given to explain this reduction process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2.0 μm spectroscopic properties of Er3+/Tm3+/Ho3+ triply-doped fluorophosphate glasses pumped by 808 nm and the energy transfer mechanisms between the three rare earth ions were investigated. J-O theory was used to calculate the parameters of Ho3+ in fluorophosphate glasses. Absorption and emission cross-sections and the gain coefficients were calculated. The obtained lifetime r and spontaneous transition probability Ar of Ho3+:5I7 level were 10.64 ms and 93.95 s-1 respectively. The calculated maximum emission cross-section of 2.0 μm was 9.26×10-21 cm2. The energy transfer analysis indicated that the cross-relaxation of Tm3+ was important and the resonent energy transfer in Er3+&rarrHo3+, Tm3+&rarrHo3+, Er3+&rarrTm3+&rarrHo3+ process was the main channel. The study revealed that the Er3+/Tm3+/Ho3+ triply-doped fluorophosphate glass would be a potential material for 2.0 μm emission because of the efficient sensitization of Er3+ and Tm3+ to Ho3+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To study the effects of upconversion in Erbium, a set of rate equations that simulates the performance of the passively Q-switched Er:Yb:glass laser with a Co2+:MgAl2O4 saturable absorber was set up. The dynamics of the Er3+ excited state and the effect of upconversion on the passively Q-switched laser are obtained through numerical simulation of the model. It is found that the impact ratios of upconversion effect on the peak power of the passively Q-switched laser pluse and the repetition rate are both decreased with the increase of pump power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Raman spectra, infrared spectra and upconversion luminescence spectra were studied, and the effect mechanism of OH- groups on the upconversion luminescence of Er3+-doped oxyhalide tellurite glasses was analyzed. The results show that the phonon energy of lead chloride tellurite (PCT) glass was lower than that of lead fluoride tellurite (PFT) glass, but upconversion luminescence intensity of Er3+-doped PFT glass was higher than that of Er3+-doped PCT glass. The analysis considers that it was attributed mainly to the effect of OH- groups. The lower the absorption coefficient of the OH- groups, the higher the fluorescence lifetime of Er3+, and as a result the higher upconversion luminescence intensity of Er3+. In this work, the effect of OH groups on the upconversion luminescence of Er3+ was bigger than that of the phonon energy. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of F- ions in Yb3+-doped tellurite glass systems on the emission cross-section and measured fluorescence lifetime are investigated. The results show that both the emission cross-section and the fluorescence lifetime of Yb3+ ions increase from 1.32 to 1.39 pm(2) and from 0.93 to 1.12 ms respectively with the increase of F- ions from 0 to 10 mol% and that such oxyfluoride tellurite glass system is a promising laser host matrix for high power generation. FT-IR spectra were used to analyze the effect of F- ions on the structure of tellurite glasses and the change of OH- groups in this glass system. Analysis demonstrates that the addition of fluoride decreases the symmetry of the structure of tellurite glasses resulting in increasing of the emission cross-section and removes the OH- groups resulting in increasing of the measured fluorescence lifetime of Yb3+ ions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-uniform nanowires with diameters down to 50 nm are directly taper-drawn from bulk glasses. Typical loss of these wires goes down to 0.1 dB/mm for single-mode operation. Favorable photonic properties such as high index for tight optical confinement in tellurite glass nanowires and photoluminescence for active devices in doped fluoride and phosphate glass nanowires are observed. Supporting high-index tellurite nanowires with solid substrates (such as silica glass and MgF2 crystal) and assembling low-loss microcoupler with these wires are also demonstrated. Photonic nanowires demonstrated in this work may open up vast opportunities for making versatile building blocks for future micro- and nanoscale photonic circuits and components. (c) 2006 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors demonstrate a 1.5 mu m wavelength microfiber laser formed by tightening a doped microfiber into a knot in air. The 2-mm-diameter knot, assembled using a 3.8-mu m-diameter microfiber that is directly drawn from Er:Yb-doped phosphate glass, serves as both active medium and resonating cavity for lasing. Single-longitudinal-mode laser with threshold of about 5 mW and output power higher than 8 mu W is obtained. Their initial results suggest a simple approach to highly compact lasers based on doped microscale optical fibers. (c) 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Broadband infrared luminescence is observed in various Bi-doped oxide glasses prepared by conventional melting-quenching technique. The absorption spectrum of the Bi-doped germanium oxide glass consists of five broad peaks at below 370, 500, 700, 800 and 1000 nm. The fluorescence spectrum exhibits a broad peak at about 1300 nm with full width at half maximum (FWHM) of more than 300 nm when excited by an 808 nm laser diode. The fluorescence lifetime at room temperature decreases with increasing Bi2O3 concentration. Influence of the glass composition and melting atmosphere on the fluorescence lifetime and luminescent intensity is investigated. The mechanism of the broadband infrared luminescence is suggested. The product of stimulated emission cross-section and lifetime of the Bi-doped aluminophosphate glass is about 5.0 X 10(-24) cm(2) s. The glasses might be promising for applications in broadband optical fiber amplifiers and tunable lasers. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we present some approaches recently developed for enhancing light emission from Er-based materials and devices. We have investigated the luminescence quenching processes limiting quantum efficiency in light-emitting devices based on Si nanoclusters (Si nc) or Er-doped Si nc. It is found that carrier injection, while needed to excite Si nc or Er ions through electron-hole recombination, at the same time produces an efficient non-radiative Auger de-excitation with trapped carriers. A strong light confinement and enhancement of Er emission at 1.54 μm in planar silicon-on-insulator waveguides containing a thin layer (slot) of SiO2 with Er-doped Si nc at the center of the Si core has been obtained. By measuring the guided photoluminescence from the cleaved edge of the sample, we have observed a more than fivefold enhancement of emission for the transverse magnetic mode over the transverse electric one at room temperature. Slot waveguides have also been integrated with a photonic crystal (PhC), consisting of a triangular lattice of holes. An enhancement by more than two orders of magnitude of the Er near-normal emission is observed when the transition is in resonance with an appropriate mode of the PhC slab. Finally, in order to increase the concentration of excitable Er ions, a completely different approach, based on Er disilicate thin films, has been explored. Under proper annealing conditions crystalline and chemically stable Er2Si2O7 films are obtained; these films exhibit a strong luminescence at 1.54 μm owing to the efficient reduction of the defect density. © 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the role of the Si excess on the photoluminescence properties of Er doped substoichiometric SiOx layers. We demonstrate that the Si excess has two competing roles: when agglomerated to form Si nanoclusters (Si-nc) it enhances the Er excitation efficiency but it also introduces new non-radiative decay channels. When Er is excited through an energy transfer from Si-nc, the beneficial effect on the enhanced excitation efficiency prevails and the Er emission increases with increasing Si content. Nevertheless the maximum excited Er fraction is only of the order of percent. In order to increase the concentration of excited Er ions, a different approach based on Er silicate thin film has been explored. Under proper annealing conditions, an efficient luminescence at 1535 nm is found and all of the Er ions in the material is optically active. The possibility to efficiently excite Er ions also through electron-hole mediated processes is demonstrated in nanometer-scale Er-Si-O/Si multilayers. These data are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a Raman-soliton continuum extending from 2 to 3 μm, in a highly germanium-doped silica-clad fiber, pumped by a nanotube mode-locked thulium-doped fiber system delivering 12 kW sub-picosecond pulses at 1.95 μm. © OSA 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Con-elation between nc-Si, Er3+ and nonradiative defects in Er-doped nc-Si/SiO2 films is studied. Upon the 514.5 run laser excitation, the samples exhibit a nanocrystal-related spectrum centered at around 750 nm and an Er3+ luminescence line at 1.54mum. With increasing Er3+ content in the films,the Er3+ emission becomes intense while the photoluminescence at 750 nm decreases. Hydrogen passivation of the samples is shown to result in increases of the two luminescence peaks. However, the effect of hydrogen treatment is different for the samples annealed at different temperatures. The experimental results show that the coupling between Er3+, nc-Si and noradiative centers has a great influence on photoluminescence from nc-Si/SiO2 < Er > films.