945 resultados para Equivalent-circuit model
Resumo:
A monolithic photoreceiver which consists of a double photodiode (DPD) detector and a regulated cascade(RGC) transimpedance amplifier (TIA) is designed. The small signal circuit model of DPD is given and the band width design method of a monolithic photoreceiver is presented. An important factor which limits the bandwidth of DPD detector and the photoreceiver is presented and analyzed in detail. A monolithic photoreceiver with 1.71GHz bandwidth and 49dB transimpedance gain is designed and simulated by applying a low-cost 0. 6um CMOS process and the test result is given.
Resumo:
The binding energy of a biexciton in GaAs quantum-well wires is calculated variationally by use of a two-parameter trial wavefunction and a one-dimensional equivalent potential model. There is no artificial parameter added in our calculation. Our results agree fairly well with the previous results. It is found that the binding energies are closely correlative to the size of wire. The binding energy of biexcitons is smaller than that of neutral bound excitons in GaAs quantum-well wires when the dopant is located at the centre of the wires.
Resumo:
Polymeric electrolytes of (PEO1)(10) LiClO4-Al2O3 (PEO: poly (ethyleneoxide)) and (PEO2)(16)LiClO4-EC (EC: ethylene carbonate) were prepared. We proposed an equivalent circuit and gave the meaning of the concerned circuit elements. When the impedance spectrum deformed severely, the ionic conductivity of polymer electrolyte was determined by using the maximum of imaginary impedance, which is a convenient method.
Resumo:
The effects of plasticizer ethylene carbonate (EC) on the AC impedance spectra and the ionic conductivity are reported. With increasing of EC concentration the semicircle in high frequency disappears, and the slope of the straight line in low frequency decreases. The data obtained from impedance experiments can be explained using an equivalent circuit proposed. On the other hand, the room temperature conductivity increases with EC concentration because of the increase of the segmental flexibility of PEO. For lower EC concentration samples, the temperature dependence of conductivity in low temperature range follows Arrhenius type, but when EC concentration is larger than 20%, the temperature dependence of conductivity obeys the Vogel-Tamman-Fulcher (VTF) equation in all temperature ranges.
Resumo:
The ac impedance plots of ( PEO)(16) LiClO4-EC composite polymer electrolytes were studied. The equivalent circuit of stainless steel electrode(SS)/composite electrolyte/SS system was applied to explain the ac impedance plots, The results showed that the equivalent circuit could fit the experimental data very well. The ionic conductivity was calculated using the bulk resistance that was obtained from equivalent circuit. The effect of EC on the conductive behavior was explained by the interactions among different species formed in the composite polymer electrolytes. For lower EC concentration samples, the temperature dependence of conductivity in low temperature range followed Arrhenius type, but when EC concentration was larger than 20%, the temperature dependence of conductivity obeyed the Vogel-Tamman-Fulcher (VTF) equation in all temperature ranges.
Resumo:
A composite solid polymer electrolyte (SPE) of (PEO)(10)LiClO4-Al2O3 was prepared and Pt and stainless steel(SS) blocking electrodes were used for an impedance study. It was found that the semicircle in the high frequency range and the straight line in the low frequency range depend upon different blocking electrodes and polarization potentials applied in the experiments. In the equivalent circuit. two constant phase elements (CPE) have been used instead of the pure geometrical and double layer capacitances. respectively. A theoretical line calculated from their estimated values has a good correlation with the experiment data. Moreover. the equivalent circuit also can be used to explain the impedance properties of Pt and stainless steel (SS) blocking electrodes both in the high and the low frequency ranges. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Charge transport in polypyrrole doped with indigo-carmine was investigated by the method of electrochemical alternating current impedance. By the nonlinear least square fitting, the equivalent circuit and parameter of each component are obtained. The apparent diffusion coefficients and heterogeneous electron transfer constants are given. It is found that, along with the increasing of film thickness, D-app and k(0) increase also.
Resumo:
This thesis describes an investigation of retinal directional selectivity. We show intracellular (whole-cell patch) recordings in turtle retina which indicate that this computation occurs prior to the ganglion cell, and we describe a pre-ganglionic circuit model to account for this and other findings which places the non-linear spatio-temporal filter at individual, oriented amacrine cell dendrites. The key non-linearity is provided by interactions between excitatory and inhibitory synaptic inputs onto the dendrites, and their distal tips provide directionally selective excitatory outputs onto ganglion cells. Detailed simulations of putative cells support this model, given reasonable parameter constraints. The performance of the model also suggests that this computational substructure may be relevant within the dendritic trees of CNS neurons in general.
Resumo:
D.J. Currie, M.H. Lee and R.W. Todd, 'Prediction of Physical Properties of Yeast Cell Suspensions using Dielectric Spectroscopy', Conference on Electrical Insulation and Dielectric Phenomena, (CEIDP 2006), Annual Report, pp 672 ? 675, October 15th -18th 2006, Kansas City, Missouri, USA. Organised by IEEE Dielectrics and Electrical Insulation Society.
A simulation-based design method to transfer surface mount RF system to flip-chip die implementation
Resumo:
The flip-chip technology is a high chip density solution to meet the demand for very large scale integration design. For wireless sensor node or some similar RF applications, due to the growing requirements for the wearable and implantable implementations, flip-chip appears to be a leading technology to realize the integration and miniaturization. In this paper, flip-chip is considered as part of the whole system to affect the RF performance. A simulation based design is presented to transfer the surface mount PCB board to the flip-chip die package for the RF applications. Models are built by Q3D Extractor to extract the equivalent circuit based on the parasitic parameters of the interconnections, for both bare die and wire-bonding technologies. All the parameters and the PCB layout and stack-up are then modeled in the essential parts' design of the flip-chip RF circuit. By implementing simulation and optimization, a flip-chip package is re-designed by the parameters given by simulation sweep. Experimental results fit the simulation well for the comparison between pre-optimization and post-optimization of the bare die package's return loss performance. This design method could generally be used to transfer any surface mount PCB to flip-chip package for the RF systems or to predict the RF specifications of a RF system using the flip-chip technology.
Resumo:
We present a new circuit-model approach which can be used to compute the mutual impedance between two dipoles fed at the same feed point. The validity of the method is confirmed by comparison with mutual impedance values obtained when the dipoles are individually excited and orientated at angles between 0degrees and 90degrees. (C) 2004 Wiley Periodicals, Inc.
Resumo:
An efficient analysis and design of an electromagnetic-bandgap (EBG) waveguide with resonant loads is presented. Equivalent-circuit analysis is employed to demonstrate the differences between EBG waveguides with resonant and nonresonant loadings. As a result of the resonance, transmission zeros at finite frequencies emerge. The concept is demonstrated in E-plane waveguides. A generic fast and efficient formulation is presented, which starts from the generalized scattering matrix of the unit cell and derives the dispersion properties of the infinite structure. Both real and imaginary parts of the propagation constant are derived and discussed. The Floquet wavelength and impedance are also presented. The theoretical results are validated by comparison with simulations of a finite structure and experimental results. The application of the proposed EBG waveguide in the suppression of the spurious passband of a conventional E-plane filter is presented by experiment.
Resumo:
Periodically loaded dipole arrays printed on grounded dielectric substrate are shown to exhibit left-handed propagation properties. In an equivalent transmission line representation, lefthandedness emerges due to the excess series capacitance and shunt inductance. Based on this concept, the authors study the distribution of the modal fields and the variation of series capacitance and shunt inductance as the dipoles are loaded with stubs. Full wave dispersion curves that show the gradual transition from a right-handed to a left-handed medium upon periodically loading the dipoles with stubs are presented. An equivalent circuit is derived that matches to a very good extent the full wave result. The cell dimensions are a small fraction of the wavelength (),15), so the structure can be considered as an equivalent homogeneous surface. The structure is simple, readily scalable to higher frequencies and compatible with low-cost fabrication techniques.
Resumo:
An analytic formulation of dynamic electro-thermally induced nonlinearity is developed for a general resistive element, yielding a self-heating circuit model based on a fractional derivative. The model explains the 10 dB/decade slope of the intermodulation products observed in two-tone testing. Two-tone testing at 400 MHz of attenuators, microwave chip terminations, and coaxial terminations is reported with tone spacing ranging from 1 to 100 Hz.
Resumo:
The principle aspects of passive intermodulation (PIM) characterisation in distributed printed circuits with cascaded lumped nonlinearities are presented. Mechanisms of PIM generations have been investigated experimentally and modelled using the formalism of X-parameters. The devised equivalent circuit models are applied to the analysis of microstrip lines with distributed and cascaded lumped sources of nonlinearity. The dynamic measurements have revealed that PIM generation rates in straight and meandered microstrip lines differ and significantly deviate from those expected for the respective discrete sources of nonlinearity. The obtained results indicate that multiple physical sources of nonlinearity contribute to PIM generation in printed circuits. Finally, it is demonstrated that the electrical discontinuities can have significant effect on the overall PIM response of the distributed passive circuits and cause PIM product leakage and parasitic coupling between isolated circuit elements.