897 resultados para Energy consumption survey
Resumo:
Climate change is a crisis that is going to affect all of our lives in the future. Ireland is expected to have increased storms and rain throughout the country. This will affect our lives greatly unless we do something to change it. In an attempt to try and reduce the impacts of climate change, countries across the world met to address the problem. The meeting became known as the Kyoto Protocol. The Kyoto protocol set out objectives for each developed country to achieve with regards to carbon emissions to the same levels as 1990 levels. Due to the economy in Ireland being at a low point in 1990, Ireland was given a target of 13% carbon emissions above 1990 levels. In order to meet targets Ireland produced two energy papers, the green paper and the white paper. The green paper identified drivers for energy management and control; they were security of energy supply, economic competitiveness and environmental protection. The white paper produced targets in which we should aim to achieve to try and address the green papers drivers. Within the targets was the plan to reduce energy consumption in the public sector by 33% by 2020 through energy conservation measures. Schools are part of the public sector that has targets to reduce its energy consumption. To help to achieve targets in schools initiatives have been developed by the government for schools. Energy audits should be performed in order to identify areas where the schools can improve their current trends and show where they can invest in the future to save money and reduce the schools overall environmental footprint. Grants are available for the schools for insulation through the energy efficiency scheme and for renewable energy technologies through the ReHeat scheme. The promotion of energy efficient programs in schools can have a positive effect for students to have an understanding. The Display Energy Certificate is a legal document that can be used to understand how each school is performing from an energy perspective. It can help schools to understand why they need to change their current energy management structure. By improving the energy management of the schools they then improve the performance on the Display Energy Certificate. Schools should use these tools wisely and take advantage of the grants available which can in the short to long term help them to save money and reduce their carbon footprint.
Resumo:
Energy management is the process of monitoring, controlling and conserving energy in a building or organisation. The main reasons for this are for cost purposes and benefit to the environment. Through various techniques and solutions for lighting, heating, office equipment, the building fabric etc along with a change in people’s attitudes there can be a substantial saving in the amount spent on energy. A good example o f energy waste in GMIT is the lighting situation in the library. All the lights are switched on all day on even in places where that is adequate daylighting, which is a big waste o f energy. Also the lights for book shelves are left on. Surely all these books won’t be searched for all at the one time. It would make much more sense to have local switches that the users can control when they are searching for a particular book. Heating controls for the older parts o f the college are badly needed. A room like 834 needs a TRV to prevent it from overheating as temperatures often reach the high twenties due to the heat from the radiators, computers, solar gains and heat from users o f the room. Also in the old part o f the college it is missing vital insulation, along with not being air tight due to the era when it was built. Pumped bonded bead insulation and sealant around services and gaps can greatly improve the thermal performance o f the building and help achieve a higher BER cert. GMIT should also look at the possibility o f installing a CHP plant to meet the base heating loads. It would meet the requirement o f running 4500 hours a year and would receive some financial support from the Accelerated Capital Allowance. I f people’s attitudes are changed through energy awareness campaigns and a few changes made for more energy efficient equipment, substantial savings can be made in the energy expenditure.
Resumo:
As manufacturers face an increasingly competitive environment, they seek out opportunities to reduce production costs without negatively affecting the yield or the quality of their finished products. The challenge of maintaining high product quality while simultaneously reducing production costs can often be met through investments in energy efficient technologies and energy efficiency practices. Energy management systems can offer both technological and best practice efficiencies in order to achieve substantial savings. A strong energy management system provides a solid foundation for an organisation to reduce production costs and improve site efficiency. The I.S EN16001 energy management standard specifies the requirements for establishing, implementing, maintaining and improving an energy management system and represents the latest best practice for energy management in Ireland. The objective of the energy management system is to establish a systematic approach for improving energy performance continuously. The I.S EN16001 standard specifies the requirements for continuous improvement through using energy more efficiently. The author analysed how GlaxoSmithKline’s (GSK) pharmaceutical manufacturing facility in Cork implemented the I.S. EN16001 energy management system model, and defined how energy saving opportunities where identified and introduced to improve efficiency performance. The author performed an extensive literature research in order to determine the current status of the pharmaceutical industry in Ireland, the processes involved in pharmaceutical manufacturing, the energy users required for pharmaceutical manufacturing and the efficiency measures that can be applied to these energy users in order to reduce energy consumption. The author then analysed how energy management standards are introduced to industry and critically analysed the driving factors for energy management performance in Ireland through case studies. Following an investigation as to how the I.S. EN16001 energy management standard is operated in GSK, a critical analysis of the performance achieved by the GSK energy management system is undertaken in order to determine if implementing the I.S EN16001 standard accelerates achieving energy savings. Since its introduction, the I.S. EN16001 model for energy management has enabled GSK to monitor, target and identify energy efficiency opportunities throughout the site. The model has put in place an energy management system that is continuously reviewed for improvement and to date has reduced GSK’s site operations cost by over 30% through technical improvements and generating energy awareness for smarter energy consumption within the GSK Cork site. Investment in I.S. EN16001 has proved to be a sound business strategy for GSK especially in today's manufacturing environment.
Why Catalonia will see its energy metabolism increase in the near future: an application of MuSIASEM
Resumo:
This paper applies the so-called Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) to the economy of the Spanish region of Catalonia. By applying Georgescu-Roegen's fund-flow model, it arrives at the conclusion that within a context of the end of cheap oil, the current development model based on the growth of low productivity sectors such as services and construction must change. The change is needed not only because of the increasing scarcity of affordable energy carriers, or because of the increasing environmental impact that the present development represents, but also because of an ageing population that demands labour productivity gains. This will imply industry requiring more energy consumption per worker in order to increase its productivity, and therefore its competitiveness. Thus, we conclude that energy intensity, and exosomatic energy metabolism of Catalonia will increase dramatically in the near future unless major conservation efforts are implemented in both the household and transport sectors.
Resumo:
This paper disaggregates a UK Input-Output (IO) table for 2004 based on household income quintiles from published survey data. In addition to the Input-Output disaggregation, the household components of a UK Income Expenditure (I-E) account used to inform a Social Accounting Matrix (SAM),have also been disaggregated by household income quintile. The focus of this paper is on household expenditure on the UK energy sector.
Resumo:
In this paper, we use CGE modelling techniques to identify the impact on energy use of an improvement in energy efficiency in the household sector. The main findings are that 1) when the price of energy is measured in natural units, the increase in efficiency yields only to a modification of tastes, changing as a result, the composition of household consumption; 2) when households internalize efficiency, the improvement in energy efficiency reduces the price of energy in efficiency units, providing a source of improved competitiveness as the nominal wage and the price level both fall; 3) the short-run rebound can be greater than the long run rebound if the household demand elasticity is the same for both time frames, however, the short run rebound is always lower than in the long-run if the demand for energy is relatively more elastic in the long-run; 4) the introduction of habit formation changes the composition of household consumption, modifying the magnitude of the household rebound only in the short-run. In this period, household and economy wide rebound are lowest for external habit formation and highest when consumers’ preferences are defined using a conventional utility function.
Resumo:
The aim of the paper is to identify the added value from using general equilibrium techniques to consider the economy-wide impacts of increased efficiency in household energy use. We take as an illustrative case study the effect of a 5% improvement in household energy efficiency on the UK economy. This impact is measured through simulations that use models that have increasing degrees of endogeneity but are calibrated on a common data set. That is to say, we calculate rebound effects for models that progress from the most basic partial equilibrium approach to a fully specified general equilibrium treatment. The size of the rebound effect on total energy use depends upon: the elasticity of substitution of energy in household consumption; the energy intensity of the different elements of household consumption demand; and the impact of changes in income, economic activity and relative prices. A general equilibrium model is required to capture these final three impacts.
Resumo:
The link between energy consumption and economic growth has been widely studied in the economic literature. Understanding this relationship is important from both an environmental and a socio-economic point of view, as energy consumption is crucial to economic activity and human environmental impact. This relevance is even higher for developing countries, since energy consumption per unit of output varies through the phases of development, increasing from an agricultural stage to an industrial one and then decreasing for certain service based economies. In the Argentinean case, the relevance of energy consumption to economic development seems to be particularly important. While energy intensity seems to exhibit a U-Shaped curve from 1990 to 2003 decreasing slightly after that year, total energy consumption increases along the period of analysis. Why does this happen? How can we relate this result with the sustainability debate? All these questions are very important due to Argentinean hydrocarbons dependence and due to the recent reduction in oil and natural gas reserves, which can lead to a lack of security of supply. In this paper we study Argentinean energy consumption pattern for the period 1990-2007, to discuss current and future energy and economic sustainability. To this purpose, we developed a conventional analysis, studying energy intensity, and a non conventional analysis, using the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) accounting methodology. Both methodologies show that the development process followed by Argentina has not been good enough to assure sustainability in the long term. Instead of improving energy use, energy intensity has increased. The current composition of its energy mix, and the recent economic crisis in Argentina, as well as its development path, are some of the possible explanations.
Resumo:
Encara falta per fer possible una transformació estratègica d'Europa del sistema d'energia, però el que és de la mateixa importància com a objectius a llarg termini de la FER i Reduccions de GEH són vinculants i forts objectius d'eficiència energètica, no només per 2020, però també per al 2030, 2040 i 2050, com aquesta força ajudaria a fixar l'augment de les energies renovables en el total d'energia consum i per reduir el total Emissions de GEH d'Europa en general, i les del sector de l'energia en particular, encara sent un dels majors emissors de gasos d'efecte hivernacle de tots els sectors. La refosa Directiva, prevista per 2011/12 ha de ser un bones finestres d'oportunitat per finalment establir objectius vinculants d'eficiència energètica, l'únic pilar que encara falta en la força energia interdependents i estratègia sobre el clima de la UE, basat en la reducció de gasos d'efecte hivernacle i i l'eficiència energètica.
Resumo:
In absence of comparable macroeconomic indicators for most of the Latin American economiesbeyond the 1930s, this paper presents an estimate of the apparent consumption per head of coal and petroleum for 25 countries of Latin American and the Caribbean for the year 1925, doubling the number of countries for which energy consumption estimates were previously available. Energy consumption is then used as an indicator of economic modernisation. As a result, the paper provides the basis for a quantitative comparative analysis of modernisation performance beyond the few countries for which historical national accounts are available in Latin America.
Resumo:
This paper presents a comparison of the changes in the energetic metabolic pattern of China and India, the two most populated countries in the world, with two economies undergoing an important economic transition. The comparison of the changes in the energetic metabolic pattern has the scope to characterize and explain a bifurcation in their evolutionary path in the recent years, using the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) approach. The analysis shows an impressive transformation of China’s energy metabolism determined by the joining of the WTO in 2001. Since then, China became the largest factory of the world with a generalized capitalization of all sectors ―especially the industrial sector― boosting economic labor productivity as well as total energy consumption. India, on the contrary, lags behind when considering these factors. Looking at changes in the household sector (energy metabolism associated with final consumption) in the case of China, the energetic metabolic rate (EMR) soared in the last decade, also thanks to a reduced growth of population, whereas in India it remained stagnant for the last 40 years. This analysis indicates a big challenge for India for the next decade. In the light of the data analyzed both countries will continue to require strong injections of technical capital requiring a continuous increase in their total energy consumption. When considering the size of these economies it is easy to guess that this may induce a dramatic increase in the price of energy, an event that at the moment will penalize much more the chance of a quick economic development of India.
Resumo:
[spa] En este artículo aplicamos un modelo input-output ampliado medioambientalmente para analizar un aspecto específico de la hipótesis de la curva de Kuznets ambiental. El propósito del estudio es analizar si las estructuras de consumo de los hogares con una mejor ‘posición económica’ pueden tener un efecto positivo para reducir las presiones medioambientales. Para ello combinamos información de diferentes bases de datos para analizar el impacto de la contaminación atmosférica del consumo de diferentes hogares españoles en el año 2000. Consideramos nueve gases, i.e. los seis gases de efecto invernadero (CO2, CH4, N2O, SF6, HFCs, y PFCs) y otros tres gases (SO2, NOx, y NH3). Clasificamos los hogares en quintiles de gasto per capita y quintiles de gasto equivalente. Los resultados obtenidos muestran que hay una relación positiva y elevada entre el nivel de gasto y las emisiones directas e indirectas generadas por el consumo de los hogares; sin embargo, las intensidades de emisión tienden a disminuir con el nivel de gasto para los diferentes gases, con la excepción de SF6, HFCs, y PFCs.
Resumo:
[spa] En este artículo aplicamos un modelo input-output ampliado medioambientalmente para analizar un aspecto específico de la hipótesis de la curva de Kuznets ambiental. El propósito del estudio es analizar si las estructuras de consumo de los hogares con una mejor ‘posición económica’ pueden tener un efecto positivo para reducir las presiones medioambientales. Para ello combinamos información de diferentes bases de datos para analizar el impacto de la contaminación atmosférica del consumo de diferentes hogares españoles en el año 2000. Consideramos nueve gases, i.e. los seis gases de efecto invernadero (CO2, CH4, N2O, SF6, HFCs, y PFCs) y otros tres gases (SO2, NOx, y NH3). Clasificamos los hogares en quintiles de gasto per capita y quintiles de gasto equivalente. Los resultados obtenidos muestran que hay una relación positiva y elevada entre el nivel de gasto y las emisiones directas e indirectas generadas por el consumo de los hogares; sin embargo, las intensidades de emisión tienden a disminuir con el nivel de gasto para los diferentes gases, con la excepción de SF6, HFCs, y PFCs.
Resumo:
In its 2007 Session, the Iowa General Assembly passed, and Governor Culver signed into law, extensive and far-reaching state energy policy legislation. This legislation created the Iowa Office of Energy Independence and the Iowa Power Fund. It also required a report to be issued each year detailing: • The historical use and distribution of energy in Iowa. • The growth rate of energy consumption in Iowa, including rates of growth for each energy source. • A projection of Iowa’s energy needs through the year 2025 at a minimum. • The impact of meeting Iowa’s energy needs on the economy of the state, including the impact of energy production and use on greenhouse gas emissions. • An evaluation of renewable energy sources, including the current and future technological potential for such sources. Much of the energy information for this report has been derived from the on-line resources of the Energy Information Administration (EIA) of the United States Department of Energy (USDOE). The EIA provides policy-independent data, forecasts and analyses on energy production, stored supplies, consumption and prices. For complete, economy-wide information, the most recent data available is for the year 2008. For some energy sectors, more current data is available from EIA and other sources and, when available, such information has been included in this report.
Resumo:
Tämän diplomityön tavoitteena on kartoittaa Vaahto Oy:n Hollolan tehtaan energiankulutus ja energiansäästökohteet. Ensin tutkittiin tehtaan energiankulutus ja energiankulutuksen jakautuminen. Tutkimuksessa käytettiin saatavilla olevia kulutustietoja, luettiin konekirjoja sekä haastateltiin tehtaan työntekijöitä. Lisäksi tehdashallien lämmityslaitteiden hyötysuhteet mitattiin. Tutkimuksen päätavoite oli selvittää, miksi tehtaan lämmitysenergiankulutus on kasvanut ja kannattaisiko rakennusten lämmittämiseen käyttää vaihtoehtoista lämmitysmuotoa öljylämmitykselle. Potentiaalisista energiansäästökohteista tehtiin investointilaskelmat ja toimenpide-ehdotukset. Kannattaviksi toimenpiteiksi tutkimuksessa todettiin: lämmityspolttoaineen vaihtaminen maakaasuun, nosto-ovien hankkiminen, paineilmaverkon huolto, paineilmakompressorin lämmöntalteenotto, tehdastilojen sisälämpötilan tarkastus ja työnjohtotilojen ilmanvaihdon käyntiaikojen muutos. Toimenpiteillä arvioidaan vuotuisten energiakustannusten pienenevän noin 34 000 euroa. Toimenpiteiden toteuttamisen arvioidaan maksavan 135 000 ¤, mistä lämmitysjärjestelmän vaihdon osuus on 100 000 ¤.