991 resultados para Emotional Expression
Resumo:
Purpose: The apoptosis of retinal neurons plays a critical role in the pathogenesis of diabetic retinopathy (DR), but the molecular mechanisms underlying this phenomenon remain unclear. The purpose of this study was to investigate the cellular localization and the expression of microRNA-29b (miR-29b) and its potential target PKR associated protein X (RAX), an activator of the pro-apoptotic RNA-dependent protein kinase (PKR) signaling pathway, in the retina of normal and diabetic rats. Methods: Retinas were obtained from normal and diabetic rats within 35 days after streptozotocin (STZ) injection. In silico analysis indicated that RAX is a potential target of miR-29b. The cellular localization of miR-29b and RAX was assessed by in situ hybridization and immunofluorescence, respectively. The expression levels of miR-29b and RAX mRNA were evaluated by quantitative reverse transcription PCR (qRT-PCR), and the expression of RAX protein was evaluated by western blot. A luciferase reporter assay and inhibition of endogenous RAX were performed to confirm whether RAX is a direct target of miR-29b as predicted by the in silico analysis. Results: We found that miR-29b and RAX are localized in the retinal ganglion cells (RGCs) and the cells of the inner nuclear layer (INL) of the retinas from normal and diabetic rats. Thus, the expression of miR-29b and RAX, as assessed in the retina by quantitative RT-PCR, reflects their expression in the RGCs and the cells of the INL. We also revealed that RAX protein is upregulated (more than twofold) at 3, 6, 16, and 22 days and downregulated (70%) at 35 days, whereas miR-29b is upregulated (more than threefold) at 28 and 35 days after STZ injection. We did not confirm the computational prediction that RAX is a direct target of miR-29b. Conclusions: Our results suggest that RAX expression may be indirectly regulated by miR-29b, and the upregulation of this miRNA at the early stage of STZ-induced diabetes may have a protective effect against the apoptosis of RGCs and cells of the INL by the pro-apoptotic RNA-dependent protein kinase (PKR) signaling pathway.
Resumo:
Background: Xylella fastidiosa, a Gram-negative fastidious bacterium, grows in the xylem of several plants causing diseases such as citrus variegated chlorosis. As the xylem sap contains low concentrations of amino acids and other compounds, X. fastidiosa needs to cope with nitrogen limitation in its natural habitat. Results: In this work, we performed a whole-genome microarray analysis of the X. fastidiosa nitrogen starvation response. A time course experiment (2, 8 and 12 hours) of cultures grown in defined medium under nitrogen starvation revealed many differentially expressed genes, such as those related to transport, nitrogen assimilation, amino acid biosynthesis, transcriptional regulation, and many genes encoding hypothetical proteins. In addition, a decrease in the expression levels of many genes involved in carbon metabolism and energy generation pathways was also observed. Comparison of gene expression profiles between the wild type strain and the rpoN null mutant allowed the identification of genes directly or indirectly induced by nitrogen starvation in a sigma(54)-dependent manner. A more complete picture of the sigma(54) regulon was achieved by combining the transcriptome data with an in silico search for potential sigma(54)-dependent promoters, using a position weight matrix approach. One of these sigma(54)-predicted binding sites, located upstream of the glnA gene (encoding glutamine synthetase), was validated by primer extension assays, confirming that this gene has a sigma(54)-dependent promoter. Conclusions: Together, these results show that nitrogen starvation causes intense changes in the X. fastidiosa transcriptome and some of these differentially expressed genes belong to the sigma(54) regulon.
Resumo:
The mating sign that each drone leaves when mating with a queen essentially consists of mucus gland proteins. We employed a Representational Difference Analysis (RDA) methodology to identify genes that are differentially expressed in mucus glands during sexual maturation of drones. The RDA library for mucus glands of newly emerged drones was more complex than that of 8 day-old drones, with matches to 20 predicted genes. Another 26 reads matched to the Apis genome but not to any predicted gene. Since these ESTs were located within ORFs they may represent novel honey bee genes, possibly fast evolving mucus gland proteins. In the RDA library for mucus glands of 8 day-old drones, most reads corresponded to a capsid protein of deformed wing virus, indicating high viral loads in these glands. The expression of two genes encoding venom allergens, acid phosphatase-1 and hyaluronidase, in drone mucus glands argues for their homology with the female venom glands, both associated with the reproductive system.
Resumo:
Background: During mating, insect males eject accessory gland proteins (Acps) into the female genital tract. These substances are known to affect female post-mating behavior and physiology. In addition, they may harm the female, e. g., in reducing its lifespan. This is interpreted as a consequence of sexual antagonistic co-evolution. Whereas sexual conflict abounds in non-social species, the peculiar life history of social insects (ants, bees, wasps) with lifelong pair-bonding and no re-mating aligns the reproductive interests of the sexes. Harming the female during mating would negatively affect male fitness and sexual antagonism is therefore not expected. Indeed, mating appears to increase female longevity in at least one ant species. Acps are presumed to play a role in this phenomenon, but the underlying mechanisms are unknown. In this study, we investigated genes, which are preferentially expressed in male accessory glands of the ant Leptothorax gredleri, to determine which proteins might be transferred in the seminal fluid. Results: By a suppression subtractive hybridization protocol we obtained 20 unique sequences (USs). Twelve had mutual best matches with genes predicted for Apis mellifera and Nasonia vitripennis. Functional information (Gene Ontology) was available only for seven of these, including intracellular signaling, energy-dependent transport and metabolic enzyme activities. The remaining eight USs did not match sequences from other species. Six genes were further analyzed by quantitative RT-PCR in three life cycle stages of male ants. A gene with carboxy-lyase activity and one of unpredicted function were significantly overexpressed in accessory glands of sexually mature males. Conclusions: Our study is the first one to investigate differential gene expression in ants in a context related to mating. Our findings indicate that male accessory glands of L. gredleri express a series of genes that are unique to this species, possibly representing novel genes, in addition to conserved ones for which functions can be predicted. Identifying differentially expressed genes might help to better understand molecular mechanisms involved in reproductive processes in eusocial Hymenoptera. While the novel genes could account for rapidly evolving ones driven by intra-sexual conflict between males, conserved genes imply that rather beneficial traits might get fixed by a process described as inter-sexual cooperation between males and females.
Resumo:
Background: Glioblastoma is the most lethal primary malignant brain tumor. Although considerable progress has been made in the treatment of this aggressive tumor, the clinical outcome for patients remains poor. Histone deacetylases (HDACs) are recognized as promising targets for cancer treatment. In the past several years, HDAC inhibitors (HDACis) have been used as radiosensitizers in glioblastoma treatment. However, no study has demonstrated the status of global HDAC expression in gliomas and its possible correlation to the use of HDACis. The purpose of this study was to evaluate and compare mRNA and protein levels of class I, II and IV of HDACs in low grade and high grade astrocytomas and normal brain tissue and to correlate the findings with the malignancy in astrocytomas. Methods: Forty-three microdissected patient tumor samples were evaluated. The histopathologic diagnoses were 20 low-grade gliomas (13 grade I and 7 grade II) and 23 high-grade gliomas (5 grade III and 18 glioblastomas). Eleven normal cerebral tissue samples were also analyzed (54 total samples analyzed). mRNA expression of class I, II, and IV HDACs was studied by quantitative real-time polymerase chain reaction and normalized to the housekeeping gene beta-glucuronidase. Protein levels were evaluated by western blotting. Results: We found that mRNA levels of class II and IV HDACs were downregulated in glioblastomas compared to low-grade astrocytomas and normal brain tissue (7 in 8 genes, p < 0.05). The protein levels of class II HDAC9 were also lower in high-grade astrocytomas than in low-grade astrocytomas and normal brain tissue. Additionally, we found that histone H3 (but not histone H4) was more acetylated in glioblastomas than normal brain tissue. Conclusion: Our study establishes a negative correlation between HDAC gene expression and the glioma grade suggesting that class II and IV HDACs might play an important role in glioma malignancy. Evaluation of histone acetylation levels showed that histone H3 is more acetylated in glioblastomas than normal brain tissue confirming the downregulation of HDAC mRNA in glioblastomas.
Resumo:
Melanoma is a highly aggressive and therapy resistant tumor for which the identification of specific markers and therapeutic targets is highly desirable. We describe here the development and use of a bioinformatic pipeline tool, made publicly available under the name of EST2TSE, for the in silico detection of candidate genes with tissue-specific expression. Using this tool we mined the human EST (Expressed Sequence Tag) database for sequences derived exclusively from melanoma. We found 29 UniGene clusters of multiple ESTs with the potential to predict novel genes with melanoma-specific expression. Using a diverse panel of human tissues and cell lines, we validated the expression of a subset of three previously uncharacterized genes (clusters Hs.295012, Hs.518391, and Hs.559350) to be highly restricted to melanoma/melanocytes and named them RMEL1, 2 and 3, respectively. Expression analysis in nevi, primary melanomas, and metastatic melanomas revealed RMEL1 as a novel melanocytic lineage-specific gene up-regulated during melanoma development. RMEL2 expression was restricted to melanoma tissues and glioblastoma. RMEL3 showed strong up-regulation in nevi and was lost in metastatic tumors. Interestingly, we found correlations of RMEL2 and RMEL3 expression with improved patient outcome, suggesting tumor and/or metastasis suppressor functions for these genes. The three genes are composed of multiple exons and map to 2q12.2, 1q25.3, and 5q11.2, respectively. They are well conserved throughout primates, but not other genomes, and were predicted as having no coding potential, although primate-conserved and human-specific short ORFs could be found. Hairpin RNA secondary structures were also predicted. Concluding, this work offers new melanoma-specific genes for future validation as prognostic markers or as targets for the development of therapeutic strategies to treat melanoma.
Videodensitometric analysis of advanced carotid plaque: correlation with MMP-9 and TIMP-1 expression
Resumo:
Background: Matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of MMP (TIMP) promote derangement of the extracellular matrix, which is ultimately reflected in plaque images seen on ultrasound. Videodensitometry can identify structural disturbances in plaques. Objectives: To establish the correlations between values determined using videodensitometry in B-mode ultrasound images of advanced carotid plaques and the total expression of MMP-9 and TIMP-1 in these removed plaques. Methods: Thirty patients underwent ultrasonic tissue characterization of carotid plaques before surgery, using mean gray level (MGL), energy, entropy and homogeneity. Each patient was assigned preoperatively to one of 2 groups: group I, symptomatic patients (n = 16; 12 males; mean age 66.7 +/- 6.8 years), and group II, asymptomatic patients (n = 14; 8 males; mean age 67.6 +/- 6.81 years). Tissue specimens were analyzed for MMP-9 and TIMP-1 expression. Nine carotid arteries were used as normal tissue controls. Results: MMP-9 expression levels were elevated in group II and in normal tissues compared to group I (p < 0.001). TIMP-1 levels were higher in group II than in group I, and significantly higher in normal tissues than in group I (p = 0.039). The MGL was higher in group II compared to group I (p = 0.038). Energy had greater values in group II compared to group I (p = 0.02). There were no differences between patient groups in homogeneity and entropy. Energy positively correlated with MMP-9 and TIMP-1 expression (p = 0.012 and p = 0.031 respectively). Homogeneity positively correlated with MMP-9 and TIMP-1 expression (p = 0.034 and p = 0.047 respectively). There were no correlations between protein expression and MGL or entropy. Conclusions: Videodensitometric computer analysis of ultrasound scanning images can be used to identify stable carotid plaques, which have higher total expression levels of MMP-9 and TIMP-1 than unstable plaques.
Resumo:
Purpose: To evaluate the expression of NF-kappa B pathway genes in total bone marrow samples obtained from MM at diagnosis using real-time quantitative PCR and to evaluate its possible correlation with disease clinical features and survival. Material and methods: Expression of eight genes related to NF-kappa B pathway (NFKB1, IKB, RANK, RANKL, OPG, IL6, VCAM1 and ICAM1) were studied in 53 bone marrow samples from newly diagnosed MM patients and in seven normal controls, using the Taqman system. Genes were considered overexpressed when tumor expression level was at least four times higher than that observed in normal samples. Results: The percentages of overexpression of the eight genes were: NFKB1 0%, IKB 22.6%, RANK 15.1%, RANKL 31.3%, OPG 7.5%, IL6 39.6%, VCAM1 10% and ICAM1 26%. We found association between IL6 expression level and International Staging System (ISS) (p = 0.01), meaning that MM patients with high ISS scores have more chance of overexpression of IL6. The mean value of ICAM1 relative expression was also associated with the ISS score (p = 0.02). Regarding OS, cases with IL6 overexpression present worse evolution than cases with IL6 normal expression (p = 0.04). Conclusion: We demonstrated that total bone marrow aspirates can be used as a source of material for gene expression studies in MM. In this context, we confirmed that IL6 overexpression was significantly associated with worse survival and we described that it is associated with high ISS scores. Also, ICAM1 was overexpressed in 26% of cases and its level was associated with ISS scores.
Resumo:
Background: High-throughput molecular approaches for gene expression profiling, such as Serial Analysis of Gene Expression (SAGE), Massively Parallel Signature Sequencing (MPSS) or Sequencing-by-Synthesis (SBS) represent powerful techniques that provide global transcription profiles of different cell types through sequencing of short fragments of transcripts, denominated sequence tags. These techniques have improved our understanding about the relationships between these expression profiles and cellular phenotypes. Despite this, more reliable datasets are still necessary. In this work, we present a web-based tool named S3T: Score System for Sequence Tags, to index sequenced tags in accordance with their reliability. This is made through a series of evaluations based on a defined rule set. S3T allows the identification/selection of tags, considered more reliable for further gene expression analysis. Results: This methodology was applied to a public SAGE dataset. In order to compare data before and after filtering, a hierarchical clustering analysis was performed in samples from the same type of tissue, in distinct biological conditions, using these two datasets. Our results provide evidences suggesting that it is possible to find more congruous clusters after using S3T scoring system. Conclusion: These results substantiate the proposed application to generate more reliable data. This is a significant contribution for determination of global gene expression profiles. The library analysis with S3T is freely available at http://gdm.fmrp.usp.br/s3t/.S3T source code and datasets can also be downloaded from the aforementioned website.
Resumo:
Background: Antigens for Hantavirus serological tests have been produced using DNA recombinant technology for more than twenty years. Several different strategies have been used for that purpose. All of them avoid the risks and difficulties involved in multiplying Hantavirus in the laboratory. In Brazil, the Araraquara virus is one of the main causes of Hantavirus Cardio-Pulmonary Syndrome (HCPS). Methods: In this investigation, we report the expression of the N protein of the Araraquara Hantavirus in a Baculovirus Expression System, the use of this protein in IgM and IgG ELISA and comparison with the same antigen generated in E. coli. Results: The protein obtained, and purified in a nickel column, was effectively recognized by antibodies from confirmed HCPS patients. Comparison of the baculovirus generated antigen with the N protein produced in E. coli showed that both were equally effective in terms of sensitivity and specificity. Conclusions: Our results therefore indicate that either of these proteins can be used in serological tests in Brazil.
Resumo:
Background: MicroRNAs (miRNAs) are short non-coding RNAs that inhibit translation of target genes by binding to their mRNAs. The expression of numerous brain-specific miRNAs with a high degree of temporal and spatial specificity suggests that miRNAs play an important role in gene regulation in health and disease. Here we investigate the time course gene expression profile of miR-1, -16, and -206 in mouse dorsal root ganglion (DRG), and spinal cord dorsal horn under inflammatory and neuropathic pain conditions as well as following acute noxious stimulation. Results: Quantitative real-time polymerase chain reaction analyses showed that the mature form of miR-1, -16 and -206, is expressed in DRG and the dorsal horn of the spinal cord. Moreover, CFA-induced inflammation significantly reduced miRs-1 and -16 expression in DRG whereas miR-206 was downregulated in a time dependent manner. Conversely, in the spinal dorsal horn all three miRNAs monitored were upregulated. After sciatic nerve partial ligation, miR-1 and -206 were downregulated in DRG with no change in the spinal dorsal horn. On the other hand, axotomy increases the relative expression of miR-1, -16, and 206 in a time-dependent fashion while in the dorsal horn there was a significant downregulation of miR-1. Acute noxious stimulation with capsaicin also increased the expression of miR-1 and -16 in DRG cells but, on the other hand, in the spinal dorsal horn only a high dose of capsaicin was able to downregulate miR-206 expression. Conclusions: Our results indicate that miRNAs may participate in the regulatory mechanisms of genes associated with the pathophysiology of chronic pain as well as the nociceptive processing following acute noxious stimulation. We found substantial evidence that miRNAs are differentially regulated in DRG and the dorsal horn of the spinal cord under different pain states. Therefore, miRNA expression in the nociceptive system shows not only temporal and spatial specificity but is also stimulus-dependent.
Resumo:
Traumatic brain injury (TBI) produces several cellular changes, such as gliosis, axonal and dendritic plasticity, and inhibition-excitation imbalance, as well as cell death, which can initiate epileptogenesis. It has been demonstrated that dysfunction of the inhibitory components of the cerebral cortex after injury may cause status epilepticus in experimental models; we proposed to analyze the response of cortical interneurons and astrocytes after TBI in humans. Twelve contusion samples were evaluated, identifying the expression of glial fibrillary acidic protein (GFAP) and calcium-binding proteins (CaBPs). The study was made in sectors with and without preserved cytoarchitecture evaluated with NeuN immunoreactivity (IR). In sectors with total loss of NeuN-IR the results showed a remarkable loss of CaBP-IR both in neuropil and somata. In sectors with conserved cytoarchitecture less drastic changes in CaBP-IR were detected. These changes include a decrease in the amount of parvalbumin (PV-IR) neurons in layer II, an increase of calbindin (CB-IR) neurons in layers III and V, and an increase in calretinin (CR-IR) neurons in layer II. We also observed glial fibrillary acidic protein immunoreactivity (GFAP-IR) in the white matter, in the gray-white matter transition, and around the sectors with NeuN-IR total loss. These findings may reflect dynamic activity as a consequence of the lesion that is associated with changes in the excitatory circuits of neighboring hyperactivated glutamatergic neurons, possibly due to the primary impact, or secondary events such as hypoxia-ischemia. Temporal evolution of these changes may be the substrate linking severe cortical contusion and the resulting epileptogenic activity observed in some patients.
Resumo:
The molecular pathogenesis of myelodysplastic syndromes (MDS) is poorly understood. In order to expand our knowledge of genetic defects in MDS, we determined the overall profile of genes expressed in bone marrow from patients with refractory anemia with excess blasts ( RAEB) by serial analysis of gene expression ( SAGE). The present report describes a partial transcriptome of RAEB bone marrow derived from 56,694 sequenced tags that provides information about expressed gene products. This is the first attempt to determine an overall profile of gene expression specifically in RAEB at diagnosis using SAGE, which should be useful in the understanding of the physiopathology of MDS and in identifying the genes involved.
Resumo:
Background: While microRNAs (miRNAs) play important roles in tissue differentiation and in maintaining basal physiology, little is known about the miRNA expression levels in stomach tissue. Alterations in the miRNA profile can lead to cell deregulation, which can induce neoplasia. Methodology/Principal Findings: A small RNA library of stomach tissue was sequenced using high-throughput SOLiD sequencing technology. We obtained 261,274 quality reads with perfect matches to the human miRnome, and 42% of known miRNAs were identified. Digital Gene Expression profiling (DGE) was performed based on read abundance and showed that fifteen miRNAs were highly expressed in gastric tissue. Subsequently, the expression of these miRNAs was validated in 10 healthy individuals by RT-PCR showed a significant correlation of 83.97% (P<0.05). Six miRNAs showed a low variable pattern of expression (miR-29b, miR-29c, miR-19b, miR-31, miR-148a, miR-451) and could be considered part of the expression pattern of the healthy gastric tissue. Conclusions/Significance: This study aimed to validate normal miRNA profiles of human gastric tissue to establish a reference profile for healthy individuals. Determining the regulatory processes acting in the stomach will be important in the fight against gastric cancer, which is the second-leading cause of cancer mortality worldwide.
Resumo:
Background: High level piano performance requires complex integration of perceptual, motor, cognitive and emotive skills. Observations in psychology and neuroscience studies have suggested reciprocal inhibitory modulation of the cognition by emotion and emotion by cognition. However, it is still unclear how cognitive states may influence the pianistic performance. The aim of the present study is to verify the influence of cognitive and affective attention in the piano performances. Methods and Findings: Nine pianists were instructed to play the same piece of music, firstly focusing only on cognitive aspects of musical structure (cognitive performances), and secondly, paying attention solely on affective aspects (affective performances). Audio files from pianistic performances were examined using a computational model that retrieves nine specific musical features (descriptors) - loudness, articulation, brightness, harmonic complexity, event detection, key clarity, mode detection, pulse clarity and repetition. In addition, the number of volunteers' errors in the recording sessions was counted. Comments from pianists about their thoughts during performances were also evaluated. The analyses of audio files throughout musical descriptors indicated that the affective performances have more: agogics, legatos, pianos phrasing, and less perception of event density when compared to the cognitive ones. Error analysis demonstrated that volunteers misplayed more left hand notes in the cognitive performances than in the affective ones. Volunteers also played more wrong notes in affective than in cognitive performances. These results correspond to the volunteers' comments that in the affective performances, the cognitive aspects of piano execution are inhibited, whereas in the cognitive performances, the expressiveness is inhibited. Conclusions: Therefore, the present results indicate that attention to the emotional aspects of performance enhances expressiveness, but constrains cognitive and motor skills in the piano execution. In contrast, attention to the cognitive aspects may constrain the expressivity and automatism of piano performances.