986 resultados para Electronic transition


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using classical constant-pressure molecular dynamics simulations and the force constants model, radial breathing mode (RBM) transition of single-wall carbon nanotubes under hydrostatic pressure is reported. With the pressure increased, the RBM shifts linearly toward higher frequency, and the RBM transition occurs at the same critical pressure as the structural transition. The group theory indicates that the RBMs are all Raman-active; however, due to the effect of the frequency transition and the electronic structure change for tube radial deformation, the Raman intensity of the modes becomes so weak as not to be experimentally detected, which is in agreement with a recent experiment by S. Lebedkin [Phys. Rev. B 73, 094109 (2006)]. Furthermore, the calculated RBM transition pressure is well fitted to the cube of diameter (similar to 1/d(3)).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structures, Rashba spin-orbit couplings, and transport properties of InSb nanowires and nanofilms are investigated theoretically. When both the radius of the wire (or the thickness of the film) and the electric field are large, the electron bands and hole bands overlap, and the Fermi level crosses with some bands, which means that the semiconductors transit into metals. Meanwhile, the Rashba coefficients behave in an abnormal way. The conductivities increase dramatically when the electric field is larger than a critical value. This semiconductor-metal transition is observable at the room temperature. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The eight-band effective-mass Hamiltonian of the free-standing narrow-gap InAs quantum ellipsoids is developed, and the electron and hole electronic structures as well as optical properties are calculated by using the model. The energies, wave functions and transition probabilities of quantum spheres as functions of the radius of quantum sphere R is presented. It is found that the energy levels do not vary as 1/R-2, which is caused by the coupling between the conduction and valence bands, and by the constant terms correspond to the spin-orbit splitting energy. The blueshifts of hole states depend strongly on the coupling from electron states, so that the order of hole states changes as has been predicted in experiment. The exciton binding energies are calculated, the calculated excitonic gaps as functions of the ground exciton transition energy are in good agreement with the photoluminescence measured spectra in details. Finally, the hole energy levels and the linear polarization factors in InAs quantum ellipsoids as functions of the aspect ratio are presented. The state 1S(Z up arrow)((1/2)) becomes the hole ground state when e is larger than 2.4. The saturation value of the linear polarization factors of the InAs long ellipsoids of diameter 2.0 nm is 0.86, in agreement with the experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Hamiltonian of wurtzite quantum rods with an ellipsoidal boundary under electric field is given after a coordinate transformation. The electronic structure and optical properties are studied in the framework of the effective-mass envelope-function theory. The quantum-confined Stark effect is illustrated by studying the change of the electronic structures under electric field. The transition probabilities between the electron and hole states decrease sharply with the increase of the electric field. The polarization factor increases with the increase of the electric field. Effects of the electric field and the shape of the rods on the exciton effect are also investigated. The exciton binding energy decreases with the increase of both the electric field and the aspect ratio. In the end, considering the exciton binding energy, we calculated the band gap variation of size- and shape-controlled colloidal CdSe quantum rods, which is in good agreement with experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Hamiltonian of the wurtzite quantum rods with an ellipsoidal boundary is given after a coordinate transformation. The energies, wave functions, and transition possibilities are obtained as functions of the aspect ratio e with the same method we used on spherical dots. With an overall consideration of both the transition matrix element and the Boltzmann distribution we explained why the polarization factor increases with increasing e and approaches a saturation value, which tallies quite well with the experimental result. When e increases more and more S-z states are mixed into the ground, second, and third states of J(z)=1/2, resulting in an increase of the emission of z polarization. It is just the linear terms of the momentum operator in the hole Hamiltonian that cause the mixing of S and P states in the hole ground state. The effects of the crystal field splitting energy, temperature, and transverse radius to the polarization are also considered. We also calculated the band gap variation with the size and shape of the quantum rods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structure of diluted magnetic semiconductor (DMS) superlattices under an in-plane magnetic field is studied within the framework of the effective-mass theory; the strain effect is also included in the calculation. The numerical results show that an increase of the in-plane magnetic field renders the DMS superlattice from the direct band-gap system to the indirect band-gap system, and spatially separates the electron and the hole by changing the type-I band alignment to a type-II band alignment. The optical transition probability changes from type I to type II and back to type I like at large magnetic field. This phenomenon arises from the interplay among the superlattice potential profile, the external magnetic field, and the sp-d exchange interaction between the carriers and the magnetic ions. The shear strain induces a strong coupling of the light- and heavy-hole states and a transition of the hole ground states from "light"-hole to "heavy"-hole-like states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theoretical model accounting for the macropolarization effects in wurtzite III-V nitrides quantum wells (QWs) is presented. Energy dispersions and exciton binding energies are calculated within the framework of effective-mass theory and variational approach, respectively. Exciton-associated transitions (EATs) are studied in detail. An energy redshift as high as 450 meV is obtained in Al0.25GaN0.75/GaN QWs. Also, the abrupt reduction of optical momentum matrix elements is derived as a consequence of quantum-confined Stark effects. EAT energies are compared with recent photoluminescence (PL) experiments and numerical coherence is achieved. We propose that it is the EAT energy, instead of the conduction-valence-interband transition energy that is comparable with the PL energy. To restore the reduced transition rate, we apply an external electric field. Theoretical calculations show that with the presence of the external electric field the optical matrix elements for EAT increase 20 times. (C) 2001 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the electronic structures of the inhomogeneous quantum dots within the framework of the effective mass theory. The results show that the energies of electron and hole states depend sensitively on the relative magnitude 77 of the core radius to the capped quantum dot radius. The spatial distribution of the electrons and holes vary significantly when the ratio eta changes. A quantum-confinement-driven type-II-type-I transition is found in GaAs/AlxGa1-xAs-capped quantum dot structures. The phase diagram is obtained for different capped quantum dot radii. The ground-state exciton binding energy shows a highly nonlinear dependence on the innner structures of inhomogeneous quantum dots, which originates from the redistribution of the electron and hole wave functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we give the electronic structure and optical transition matrix elements of coupled quantum dots (QDs) arranged as different cubic lattices: simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc) superlattices. The results indicate that electron and hole energies of bcc, sc, and fcc superlattices are the lowest, the highest, and the middle, respectively, for the same subband under the same QD density or under the same superlattice constant. For a fixed QD density, the confinement effects in sc, fcc, and bcc superlattices are the strongest, the middle, and the weakest, respectively. There are only one, two, and four confined energy bands, with energies lower than the potential barrier for sc, bcc, and fcc QD superlattices, respectively. The results have great significance for researching and making semiconductor quantum dot devices. (C) 1998 American Institute of Physics. [S0021-8979(98)02119-7]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of electric field on the electronic structure of a spherical quantum dot is studied in the framework of the effective-mass envelope-function theory. The dependence of the energy of electron states and hole states on the applied electric field and on the quantum dot size is investigated; the mixing of heavy holes and light holes is taken into account. The selection rule for the optical transition between the conduction band and valence band states is obtained. The exciton binding energies are calculated as functions of the quantum dot radius and the strength of the electric field. (C) 1998 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic energy subbands and minigaps in lateral superlattices (LSLs) have been calculated by the plane-wave expansion method. The effect of the lateral modulation on the critical well width at which an indirect-direct (X-Gamma) optical transition occurs in the LSLs is investigated. Our theoretical results are in agreement with the available experimental data. Totally at variance with the previous variation calculational results, the minigaps between the first two subbands in LSLs, as functions of the modulation period, exhibit a maximum value at a specific length and disappear on decreasing the modulation period further. The modulations of several types of lateral potential are also evaluated; the indication is that the out-of-phase modulation on either side of the wells is the strongest while the in-phase modulation is the weakest. Our calculations also show that the effect of the difference between the effective masses of the electrons in the different materials on the subband structures is significant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structure of crystalline Y2O3 is investigated by first-principles calculations within the local-density approximation (LDA) of the density-functional theory. Results are presented for the band structure, the total density of states (DOS), the atom-and orbital-resolved partial DOS. effective charges, bond order, and charge-density distributions. Partial covalent character in the Y-O bonding is shown, and the nonequivalency of the two Y sites is demonstrated. The calculated electronic structure is compared with a variety of available experimental data. The total energy of the crystal is calculated as a function of crystal volume. A bulk modulus B of 183 Gpa and a pressure coefficient B' of 4.01 are obtained, which are in good agreement with compression data. An LDA band gap of 4.54 eV at Gamma is obtained which increases with pressure at a rate of dE(g)/dP = 0.012 eV/Gpa at the equilibrium volume. Also investigated are the optical properties of Y2O3 up to a photon energy of 20 eV. The calculated complex dielectric function and electron-energy-loss function are in good agreement with experimental data. A static dielectric constant of epsilon(O)= 3.20 is obtained. It is also found that the bottom of the conduction band consists of a single band, and direct optical transition at Gamma between the top of the valence band and the bottom of the conduction band may be symmetry forbidden.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic band structures and optical gains of InAs1-xNx/GaAs pyramid quantum dots (QDs) are calculated using the ten-band k . p model and the valence force field method. The optical gains are calculated using the zero-dimensional optical gain formula with taking into consideration of both homogeneous and inhomogeneous broadenings due to the size fluctuation of quantum dots which follows a normal distribution. With the variation of QD sizes and nitrogen composition, it can be shown that the nitrogen composition and the strains can significantly affect the energy levels especially the conduction band which has repulsion interaction with nitrogen resonant state due to the band anticrossing interaction. It facilitates to achieve emission of longer wavelength (1.33 or 1.55 mu m) lasers for optical fiber communication system. For QD with higher nitrogen composition, it has longer emission wavelength and less detrimental effect of higher excited state transition, but nitrogen composition can affect the maximum gain depending on the factors of transition matrix element and the Fermi-Dirac distributions for electrons in the conduction bands and holes in the valence bands respectively. For larger QD, its maximum optical gain is greater at lower carrier density, but it is slowly surpassed by smaller QD as carrier concentration increases. Larger QD can reach its saturation gain faster, but this saturation gain is smaller than that of smaller QD. So the trade-off between longer wavelength, maximum optical, saturation gain, and differential gain must be considered to select the appropriate QD size according to the specific application requirement. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3143025]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theoretical model for the electronic structure of porous Si is presented. Three geometries of porous Si (wire with square cross section, pore with square cross section, and pore with circular cross section) along both the [001] and [110] directions are considered. It is found that the confinement geometry affects decisively the ordering of conduction-band states. Due to the quantum confinement effect, there is a mixing between the bulk X and GAMMA states, resulting in finite optical transition matrix elements, but smaller than the usual direct transition matrix elements by a factor of 10(-3). We found that the strengths of optical transitions are sensitive to the geometry of the structure. For (001) porous Si the structure with circular pores has much stronger optical transitions compared to the other two structures and it may play an important role in the observed luminescence. For this structure the energy difference between the direct and the indirect conduction-band minima is very small. Thus it is possible to observe photoluminescence from the indirect minimum at room temperature. For (110) porous Si of similar size of cross section the energy gap is smaller than that of (001) porous Si. The optical transitions for all three structures of (110) porous Si tend to be much stronger along the axis than perpendicular to the axis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structures of quantum wires formed by lateral strain are studied in the framework of the effective-mass envelope-function method. The hole energy levels, wave functions, and optical transition matrix elements are calculated for the real quantum-wire structure, and the results are compared with experiment. It is found that one-dimensional confinement effects exist for both electronic and hole states related to the n (001) = 1 state. The lateral strained confinement causes luminescence-peak redshifts and polarization anisotropy, and the anisotropy is more noticeable than that in the unstrained case. The variation of hole energy levels with well widths in the [110] and [001] directions and wave vector along the [110BAR] direction are also obtained.