989 resultados para Electronic, Optical and Magnetic Materials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyse a picture of transport in which two large but finite charged electrodes discharge across a nanoscale junction. We identify a functional whose minimization, within the space of all bound many-body wavefunctions, defines an instantaneous steady state. We also discuss factors that favour the onset of steady-state conduction in such systems, make a connection with the notion of entropy, and suggest a novel source of steady-state noise. Finally, we prove that the true many-body total current in this closed system is given exactly by the one-electron total current, obtained from time-dependent density-functional theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for introducing correlations between electrons and ions that is computationally affordable is described. The central assumption is that the ionic wavefunctions are narrow, which makes possible a moment expansion for the full density matrix. To make the problem tractable we reduce the remaining many-electron problem to a single-electron problem by performing a trace over all electronic degrees of freedom except one. This introduces both one- and two-electron quantities into the equations of motion. Quantities depending on more than one electron are removed by making a Hartree-Fock approximation. Using the first-moment approximation, we perform a number of tight binding simulations of the effect of an electric current on a mobile atom. The classical contribution to the ionic kinetic energy exhibits cooling and is independent of the bias. The quantum contribution exhibits strong heating, with the heating rate proportional to the bias. However, increased scattering of electrons with increasing ionic kinetic energy is not observed. This effect requires the introduction of the second moment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two extreme pictures of electron-phonon interactions in nanoscale conductors are compared: one in which the vibrations are treated as independent Einstein atomic oscillators, and one in which electrons are allowed to couple to the full, extended phonon modes of the conductor. It is shown that, under a broad range of conditions, the full-mode picture and the Einstein picture produce essentially the same net power at any given atom in the nanojunction. The two pictures begin to differ significantly in the limit of low lattice temperature and low applied voltages, where electron-phonon scattering is controlled by the detailed phonon energy spectrum. As an illustration of the behaviour in this limit, we study the competition between trapped vibrational modes and extended modes in shaping the inelastic current-voltage characteristics of one-dimensional atomic wires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A tight-binding model is developed to describe the electron-phonon coupling in atomic wires under an applied voltage and to model, their inelastic current-voltage spectroscopy. Particular longitudinal phonons are found to have greatly enhanced coupling to the electronic states of the system. This leads to a large drop in differential conductance at threshold energies associated with these phonons. It is found that with increasing tension these energies decrease, while the size of the conductance drops increases, in agreement with experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reply to comment by K-H W Chu.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A previous tight-binding model of power dissipation in a nanoscale conductor under an applied bias is extended to take account of the local atomic topology and the local electronic structure. The method is used to calculate the power dissipated at every atom in model nanoconductor geometries: a nanoscale constriction, a one-dimensional atomic chain between two electrodes with a resonant double barrier, and an irregular nanowire with sharp corners. The local power is compared with the local current density and the local density of states. A simple relation is found between the local power and the current density in quasiballistic geometries. A large enhancement in the power at special atoms is found in cases of resonant and anti-resonant transmission. Such systems may be expected to be particularly unstable against current-induced modifications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tight-binding (TB) approach to the modelling of electrical conduction in small structures is introduced. Different equivalent forms of the TB expression for the electrical current in a nanoscale junction are derived. The use of the formalism to calculate the current density and local potential is illustrated by model examples. A first-principles time-dependent TB formalism for calculating current-induced forces and the dynamical response of atoms is presented. An earlier expression for current-induced forces under steady-state conditions is generalized beyond local charge neutrality and beyond orthogonal TB. Future directions in the modelling of power dissipation and local heating in nanoscale conductors are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In electromigration (EM) experiments on metallic wires, a flux of atoms can lead to motion of the centre of mass (COM) of the wire. Hence, it may be tempting to assume that the flow of current produces a net force on the wire as a whole. We point out, on the basis of known momentum-balance arguments, that the net force on a metallic wire due to a passing steady-state current is zero. This is possible, because in addition to EM driving forces, acting on scattering centres, there are counterbalancing forces, acting on the rest of the system. Drift of the COM in EM experiments occurs inevitably because the substrate keeps the crystal lattice of the wire fixed, while allowing diffusion of defects in the bulk of the wire. This drift is not evidence for a net force on the wire.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Starting from a Lagrangian mean-field theory, a set of time-dependent tight-binding equations is derived to describe dynamically and self-consistently an interacting system of quantum electrons and classical nuclei. These equations conserve norm, total energy and total momentum. A comparison with other tight-binding models is made. A previous tight-binding result for forces on atoms in the presence of electrical current flow is generalized to the time-dependent domain and is taken beyond the limit of local charge neutrality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-consistent electron potential in a current-carrying disordered quantum wire is spatially inhomogeneous due to the formation of resistivity dipoles across scattering centres. In this paper it is argued that these inhomogeneities in the potential result in a suppression of the differential conductance of such a wire at finite applied voltage. A semi-classical argument allows this suppression, quadratic in the voltage, to be related directly to the amount of intrinsic defect scattering in the wire. This result is then tested against numerical calculations.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides valuable design insights for optimizing device parameters for nanoscale planar and vertical SOI MOSFETs. The suitability of nanoscale non-planar FinFETs and classical planar single and double gate SOI MOSFETs for rf applications is examined via extensive 3D device simulations and detailed interpretation. The origin of higher parasitic capacitance in FinFETs, compared to planar MOSFETs is examined. RF figures of merit for planar and vertical MOS devices are compared, based on layout-area calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the successful fabrication of arrays of switchable nanocapacitors made by harnessing the self-assembly of materials. The structures are composed of arrays of 20-40 nm diameter Pt nanowires, spaced 50-100 nm apart, electrodeposited through nanoporous alumina onto a thin film lower electrode on a silicon wafer. A thin film ferroelectric (both barium titanate (BTO) and lead zirconium titanate (PZT)) has been deposited on top of the nanowire array, followed by the deposition of thin film upper electrodes. The PZT nanocapacitors exhibit hysteresis loops with substantial remnant polarizations, while although the switching performance was inferior, the low-field characteristics of the BTO nanocapacitors show dielectric behavior comparable to conventional thin film heterostructures. While registration is not sufficient for commercial RAM production, this is nevertheless an embryonic form of the highest density hard-wired FRAM capacitor array reported to date and compares favorably with atomic force microscopy read-write densities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Controlling coherent electromagnetic interactions in molecular systems is a problem of both fundamental interest and important applicative potential in the development of photonic and opto-electronic devices. The strength of these interactions determines both the absorption and emission properties of molecules coupled to nanostructures, effectively governing the optical properties of such a composite metamaterial. Here we report on the observation of strong coupling between a plasmon supported by an assembly of oriented gold nanorods (ANR) and a molecular exciton. We show that the coupling is easily engineered and is deterministic as both spatial and spectral overlap between the plasmonic structure and molecular aggregates are controlled. We think that these results in conjunction with the flexible geometry of the ANR are of potential significance to the development of plasmonic molecular devices.