992 resultados para Electron micrographs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A zoisite group of mineral samples from different localities are used in the present study. An EPR study on powdered samples confirms the presence of Mn(II), Fe(III) and Cr(III) in the minerals. NIR studies confirm the presence of these ions in the minerals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron collection efficiency in dye-sensitized solar cells (DSCs) is usually related to the electron diffusion length, L = (Dτ)1/2, where D is the diffusion coefficient of mobile electrons and τ is their lifetime, which is determined by electron transfer to the redox electrolyte. Analysis of incident photon-to-current efficiency (IPCE) spectra for front and rear illumination consistently gives smaller values of L than those derived from small amplitude methods. We show that the IPCE analysis is incorrect if recombination is not first-order in free electron concentration, and we demonstrate that the intensity dependence of the apparent L derived by first-order analysis of IPCE measurements and the voltage dependence of L derived from perturbation experiments can be fitted using the same reaction order, γ ≈ 0.8. The new analysis presented in this letter resolves the controversy over why L values derived from small amplitude methods are larger than those obtained from IPCE data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous yttria-stabilized zirconia (YSZ) has been regarded as a potential candidate for bone substitute as its high mechanical strength. However, porous YSZ bodies are biologically inert to bone tissue. It is therefore necessary to introduce bioactive coatings onto the walls of the porous structures to enhance the bioactivity. In this study, the porous zirconia scaffolds were prepared by infiltration of Acrylonitrile Butadiene Styrene (ABS) scaffolds with 3 mol% yttria stabilized zirconia slurry. After sintering, a method of sol-gel dip coating was involved to make coating layer of mesoporous bioglass (MBGs). The porous zirconia without the coating had high porosities of 60.1% to 63.8%, and most macropores were interconnected with pore sizes of 0.5-0.8mm. The porous zirconia had compressive strengths of 9.07-9.90MPa. Moreover, the average coating thickness was about 7μm. There is no significant change of compressive strength for the porous zirconia with mesoporous biogalss coating. The bone marrow stromal cell (BMSC) proliferation test showed both uncoated and coated zirconia scaffolds have good biocompatibility. The scanning electron microscope (SEM) micrographs and the compositional analysis graphs demonstrated that after testing in the simulated body fluid (SBF) for 7 days, the apatite formation occurred on the coating surface. Thus, porous zirconia-based ceramics were modified with bioactive coating of mesoporous bioglass for potential biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance and electron recombination kinetics of dye-sensitized solar cells based on TiO2 films consisting of one-dimensional nanorod arrays (NR-DSSCs) which are sensitized with dye N719, C218 and D205 respectively have been studied. It has been found that the best efficiency is obtained with the dye C218 based NR-DSSCs, benefiting from a 40% higher short-circuit photocurrent density. However, the open circuit photovoltage of the N719 based cell is 40 mV higher than that of the organic dye C218 and D205 based devices. Investigation of the electron recombination kinetics of the NR-DSSCs has revealed that the effective electron lifetime, τn, of the N719 based NR-DSSC is the lowest whereas the τn of the C218 based NR-DSSC is the highest among the three dyes. The higher Voc with the N719 based NR-DSSC is originated from the more negative energy level of the conduction band of the TiO2 film. In addition, in comparison to the DSSCs with conventional nanocrystalline particles based TiO2 films, the NR-DSSCs have shown over two orders of magnitude higher τn when employing N719 as the sensitizer. Nevertheless, the τn of the DSSCs with the C218 based nanorod arrays is only ten-fold higher than the that of the nanoparticles based devices. The remarkable characteristic of the dye C218 in suppressing the electron recombination of DSSCs is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An anatase TiO 2 material with hierarchically structured spheres consisting of ultrathin nanosheets with 100% of the [001] facet exposed was employed to fabricate dye-sensitized solar cells (DSC s). Investigation of the electron transport and back reaction of the DSCs by electrochemical impedance spectroscopy showed that the spheres had a threefold lower electron recombination rate compared to the conventional TiO 2 nanoparticles. In contrast, the effective electron diffusion coefficient, D n, was not sensitive to the variation of the TiO 2 morphology. The TiO 2 spheres showed the same Dn as that of the nanoparticles. The influence of TiCl 4 post-treatment on the conduction band of the TiO 2 spheres and on the kinetics of electron transport and back reactions was also investigated. It was found that the TiCl 4 post-treatment caused a downward shift of the TiO 2 conduction band edge by 30 meV. Meanwhile, a fourfold increase of the effective electron lifetime of the DSC was also observed after TiCl4 treatment. The synergistic effect of the variation of the TiO 2 conduction band and the electron recombination determined the open-circuit voltage of the DSC. © 2012 Wang et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a growing interest in the use of megavoltage cone-beam computed tomography (MV CBCT) data for radiotherapy treatment planning. To calculate accurate dose distributions, knowledge of the electron density (ED) of the tissues being irradiated is required. In the case of MV CBCT, it is necessary to determine a calibration-relating CT number to ED, utilizing the photon beam produced for MV CBCT. A number of different parameters can affect this calibration. This study was undertaken on the Siemens MV CBCT system, MVision, to evaluate the effect of the following parameters on the reconstructed CT pixel value to ED calibration: the number of monitor units (MUs) used (5, 8, 15 and 60 MUs), the image reconstruction filter (head and neck, and pelvis), reconstruction matrix size (256 by 256 and 512 by 512), and the addition of extra solid water surrounding the ED phantom. A Gammex electron density CT phantom containing EDs from 0.292 to 1.707 was imaged under each of these conditions. The linear relationship between MV CBCT pixel value and ED was demonstrated for all MU settings and over the range of EDs. Changes in MU number did not dramatically alter the MV CBCT ED calibration. The use of different reconstruction filters was found to affect the MV CBCT ED calibration, as was the addition of solid water surrounding the phantom. Dose distributions from treatment plans calculated with simulated image data from a 15 MU head and neck reconstruction filter MV CBCT image and a MV CBCT ED calibration curve from the image data parameters and a 15 MU pelvis reconstruction filter showed small and clinically insignificant differences. Thus, the use of a single MV CBCT ED calibration curve is unlikely to result in any clinical differences. However, to ensure minimal uncertainties in dose reporting, MV CBCT ED calibration measurements could be carried out using parameter-specific calibration measurements.