954 resultados para Electromagnetic fields
Resumo:
Constrained systems in quantum field theories call for a careful study of diverse classes of constraints and consistency checks over their temporal evolution. Here we study the functional structure of the free electromagnetic and pure Yang-Mills fields on the front-form coordinates with the null-plane gauge condition. It is seen that in this framework, we can deal with strictu sensu physical fields.
Resumo:
We examine a recently proposed connection constraining U(1)(em) electromagnetic gauge invariance and the nature of neutrino mass terms in the framework of G(0) = SU(3)(C) x G(W) x U(1)(N) gauge extensions of the standard model where G(W) denotes the weak isospin special unitary extended groups. We show that in a large class of G(0) models there is a unique fermion representation content and scalar fields which select the neutrino mass terms. Noteworthy. even though there are mathematically equivalent representation contents then can be different aspects concerning the physical consequences which are not a mere truism.
Resumo:
The free action for massless Ramond-Ramond fields is derived from closed superstring field theory using the techniques of Siegel and Zwiebach. For the uncompactified Type IIB superstring, this gives a manifestly Lorentz-covariant action for a self-dual five-form field strength. Upon compactification to four dimensions, the action depends on a U(1) field strength from 4D N = 2 supergravity. However, unlike the standard Maxwell action, this action is manifestly invariant under the electromagnetic duality transformation which rotates F-mn into epsilon(mnpq)F(pq).
Resumo:
We make a change of variables and a time reparametrization in the Schrödinger equation in order to obtain the propagator of a charged oscillator with a time-dependent mass and frequency under the influence of time-varying electric and magnetic fields, in terms of the simple propagators of harmonic oscillators with constant frequencies and masses. We also discuss the Jackiw transformation and others as a particular case of ours. © 1991.
Resumo:
We employ the Dirac-like equation for the gauge field proposed by Majorana to obtain an action that is symmetric under duality transformation. We also use the equivalence between duality and chiral symmetry in this fermionlike formulation to show how the Maxwell action can be seen as a mass term. ©2000 The American Physical Society.
Resumo:
The quadratic form of the Dirac equation in a Riemann space-time yields a gravitational gyromagnetic ratio κ(S) = 2 for the interaction of a Dirac spinor with curvature. A gravitational gyromagnetic ratio κ(S) = 1 is also found for the interaction of a vector field with curvature. It is shown that the Dirac equation in a curved background can be obtained as the square-root of the corresponding vector field equation only if the gravitational gyromagnetic ratios are properly taken into account.
Resumo:
We have analyzed the null-plane canonical structure of Podolsky's electromagnetic theory. As a theory that contains higher order derivatives in the Lagrangian function, it was necessary to redefine the canonical momenta related to the field variables. We were able to find a set of first and second-class constraints, and also to derive the field equations of the system. Copyright © owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.
Resumo:
Four-fermion operators have been used in the past to link the quark-exchange processes in the interaction of hadrons with the effective meson-exchange amplitudes. In this paper, we apply the similar idea of a Fierz rearrangement to the self-energy and electromagnetic processes and focus on the electromagnetic form factors of the nucleon and the electron. We explain the motivation of using four-fermion operators and discuss the advantage of this method in computing electromagnetic processes. © 2013 American Physical Society.
Resumo:
We consider in this work the electromagnetic current for a system composed of two charged bosons and show that it has a structure of many bodies even in the impulse approximation, when described in the light-front time x+. In terms of the two-body component for the bound state, the current contains two-body operators. We consider the photon interacting with two bosons and the process of pair creation connected to this interaction, interpreting it as a zero mode contribution to the current and discuss the consequences of this pair creation to the components of currents in the light front. © 2013 American Physical Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Two models with SU(3)C ⊗ SU(3)L U(1)N gauge symmetry are considered. We show that the masslessness of the photon does not prevent the neutrinos from acquiring Majorana masses. That is, there is no relation between the VEVs of Higgs fields and the electromagnetic gauge invariance contrary to what has been claimed recently. © 1998 Elsevier Science B.V. All rights reserved.
Resumo:
We describe the system of massive Weyl fields propagating in a background matter and interacting with an external electromagnetic field. The interaction with an electromagnetic field is due to the presence of anomalous magnetic moments. To canonically quantize this system first we develop the classical field theory treatment of Weyl spinors in frames of the Hamilton formalism which accounts for the external fields. Then, on the basis of the exact solution of the wave equation for a massive Weyl field in a background matter we obtain the effective Hamiltonian for the description of spin-flavor oscillations of Majorana neutrinos in matter and a magnetic field. Finally, we incorporate in our analysis the neutrino self-interaction which is essential when the neutrino density is sufficiently high. We also discuss the applicability of our results for the studies of collective effects in spin-flavor oscillations of supernova neutrinos in a dense matter and a strong magnetic field. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A charged particle is considered in a complex external electromagnetic field. The field is a superposition of an Aharonov-Bohm field and some additional field. Here we describe all additional fields known up to the present time that allow exact solution of the Schrodinger equation in a complex field.
Resumo:
The objective of the Ph.D. thesis is to put the basis of an all-embracing link analysis procedure that may form a general reference scheme for the future state-of-the-art of RF/microwave link design: it is basically meant as a circuit-level simulation of an entire radio link, with – generally multiple – transmitting and receiving antennas examined by EM analysis. In this way the influence of mutual couplings on the frequency-dependent near-field and far-field performance of each element is fully accounted for. The set of transmitters is treated as a unique nonlinear system loaded by the multiport antenna, and is analyzed by nonlinear circuit techniques. In order to establish the connection between transmitters and receivers, the far-fields incident onto the receivers are evaluated by EM analysis and are combined by extending an available Ray Tracing technique to the link study. EM theory is used to describe the receiving array as a linear active multiport network. Link performances in terms of bit error rate (BER) are eventually verified a posteriori by a fast system-level algorithm. In order to validate the proposed approach, four heterogeneous application contexts are provided. A complete MIMO link design in a realistic propagation scenario is meant to constitute the reference case study. The second one regards the design, optimization and testing of various typologies of rectennas for power generation by common RF sources. Finally, the project and implementation of two typologies of radio identification tags, at X-band and V-band respectively. In all the cases the importance of an exhaustive nonlinear/electromagnetic co-simulation and co-design is demonstrated to be essential for any accurate system performance prediction.
Resumo:
The electric dipole response of neutron-rich nickel isotopes has been investigated using the LAND setup at GSI in Darmstadt (Germany). Relativistic secondary beams of 56−57Ni and 67−72Ni at approximately 500 AMeV have been generated using projectile fragmentation of stable ions on a 4 g/cm2 Be target and subsequent separation in the magnetic dipole fields of the FRagment Separator (FRS). After reaching the LAND setup in Cave C, the radioactive ions were excited electromagnetically in the electric field of a Pb target. The decay products have been measured in inverse kinematics using various detectors. Neutron-rich 67−69Ni isotopes decay by the emission of neutrons, which are detected in the LAND detector. The present analysis concentrates on the (gamma,n) and (gamma,2n) channels in these nuclei, since the proton and three-neutron thresholds are unlikely to be reached considering the virtual photon spectrum for nickel ions at 500 AMeV. A measurement of the stable 58Ni isotope is used as a benchmark to check the accuracy of the present results with previously published data. The measured (gamma,n) and (gamma,np) channels are compared with an inclusive photoneutron measurement by Fultz and coworkers, which are consistent within the respective errors. The measured excitation energy distributions of 67−69Ni contain a large portion of the Giant Dipole Resonance (GDR) strength predicted by the Thomas-Reiche-Kuhn energy-weighted sum rule, as well as a significant amount of low-lying E1 strength, that cannot be attributed to the GDR alone. The GDR distribution parameters are calculated using well-established semi-empirical systematic models, providing the peak energies and widths. The GDR strength is extracted from the chi-square minimization of the model GDR to the measured data of the (gamma,2n) channel, thereby excluding any influence of eventual low-lying strength. The subtraction of the obtained GDR distribution from the total measured E1 strength provides the low-lying E1 strength distribution, which is attributed to the Pygmy Dipole Resonance (PDR). The extraction of the peak energy, width and strength is performed using a Gaussian function. The minimization of trial Gaussian distributions to the data does not converge towards a sharp minimum. Therefore, the results are presented by a chi-square distribution as a function of all three Gaussian parameters. Various predictions of PDR distributions exist, as well as a recent measurement of the 68Ni pygmy dipole-resonance obtained by virtual photon scattering, to which the present pygmy dipole-resonance distribution is also compared.