873 resultados para Electrochemical quartz crystal nanobalance
Resumo:
[Ru(HL)(PPh3)(2)Cl]Cl complexes have been obtained in which HL = N(4)-ortho (complex 1), N(4)-meta (complex 2) and N(4) pctratolyl 2-acetylpyridine thiosemicarbazone (complex 3). NMR and electrochemical studies indicate that both cis and trans isomers exist in solution, and that the cis isomers are converted into the trans isomers with time. Crystal structure determination of (1) reveals that the traps isomer is formed in the solid state. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A new occurrence of rankamaite is here described at the Urubu pegmatite, Itinga municipality, Minas Gerais, Brazil. The mineral forms cream-white botryoidal aggregates of acicular to fibrous crystals, intimately associated with simpsonite, thoreaulite, cassiterite, quartz, elbaite, albite, and muscovite. The average of six chemical analyses obtained by electron microprobe is (range in parentheses, wt%): Na(2)O 2.08 (1.95-2.13), K(2)O 2.61 (2.52-2.74), Al(2)O(3) 1.96 (1.89-2.00), Fe(2)O(3) 0.01 (0.00-0.03), TiO(2) 0.02 (0.00-0.06), Ta(2)O(5) 81.04 (79.12-85.18), Nb(2)O(5) 9.49 (8.58-9.86), total 97.21 (95.95-101.50). The chemical formula derived from this analysis is (Na(1.55)K(1.28))(Sigma 2.83)(Ta(8.45)Nb(1.64)Al(0.89)Fe(0.01)(3+)Ti(0.01))(Sigma 11.00)[O(25.02)(OH)(5.98)](Sigma 31.00). Rankamaite is an orthorhombic ""tungsten bronze"" (OTB), crystallizing in the space group Cmmm. Its unit-cell parameters refined from X-ray diffraction powder data are: a = 17.224(3), b = 17.687(3), c = 3.9361(7) angstrom, V = 1199.1(3) angstrom(3), Z = 2. Rietveld refinement of the powder data was undertaken using the structure of LaTa(5)O(14) as a starting model for the rankamaite structure. The structural formula obtained with the Rietveld analyses is: (Na(2.21)K(1.26))Sigma(3.37)(Ta(9.12)NB(1.30) Al(0.59))(Sigma 11.00)[O(26.29)(OH)(4.71)](Sigma 31.00). The tantalum atoms are coordinated by six and seven oxygen atoms in the form of distorted TaO(6) octahedra and TaO(2) pentagonal bipyramids, respectively. Every pentagonal bipyramid shares edges with four octahedra, thus forming Ta(5)O(14) units. The potassium atom is in an 11-fold coordination, whereas one sodium atom is in a 10-fold and the other is in a 12-fold coordination. Raman and infrared spectroscopy were used to investigate the room-temperature spectra of rankamaite.
Resumo:
The crystal-plastic behavior of quartz mylonites from the Ribeira Shear Zone (SE Brazil), a major strike-slip structure that was active during a prograde metamorphic phase related to the Neoproterozoic Brasiliano-Pan African Orogeny, was investigated using a multi-method approach. Geothermobarometry results indicate deformational conditions ranging from similar to 300 to similar to 630 degrees C and 500-700 MPa. A strong correlation between mapped metamorphic zones and a dominance of different dynamic recrystallization mechanisms of quartz occurs within the mylonite zone. Bulging recrystallization (BLG) dominates within the chlorite zone between 300 and 410 degrees C, subgrain rotation recrystallization (SGR) operates within the biotite zone from 410 to 520 degrees C, and grain boundary migration recrystallization (GBM) dominates in the garnet zone above 520 degrees C. The development of quartz c-axis textures is mainly governed by temperature and dynamic recrystallization mechanisms. Textures from BLG zone mylonites are characterized by maxima around Z; SGR zone mylonites display single girdles or asymmetric type I crossed girdles; and GBM zone mylonites comprise maxima around Y and intermediate between X and Z. The scarcity or absence of water-bearing fluid inclusions in quartz mylonites from the SGR and GBM zones, which are dominated by carbonic inclusions, suggests water-deficient conditions, whereas BLG zone mylonites are dominated by water-bearing inclusions. This evidence indicates that water was available in the protoliths but has been eliminated with increasing deformation and deformation temperature. No effect of the water content variation on the quartz microstructural and recrystallized grain size evolution was detected, and little influence on c-axis texture development was observed. Most of the fluid inclusion densities were reequilibrated during the shear zone exhumation history, recording a decompression in the range of 300-500 MPa, while microstructural reequilibration effects related to the prograde metamorphism are largely preserved. Fluid inclusion microstructures and densities from two SGR zone samples preserved evidence for a near isothermal compression within the interior of the Ribeira Shear Zone during the prograde metamorphism. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The time dependence of the concentration of CO2 in an electrochemical thin layer cavity is studied with Fourier transform infrared spectroscopy (FTIR) in order to evaluate the extent to which the thin layer cavity is diffusionally decoupled from the surrounding bulk electrolyte. For the model system of CO on Pt(111) in 0.1 M HClO4, it is found that the concentration of CO2, formed by electro-oxidation of CO, equilibrates rapidly with the surrounding bulk electrolyte. This rapid equilibration indicates that there is diffusion out of the thin layer, even on the short time scales of typical infrared experiments (1-3 min). However, since the measured CO2 absorbance intensity as a function of time is reproducible to within 10%, a new time-dependent method for surface coverage calibration using solution-phase species is proposed.
Resumo:
Platinum stepped surfaces vicinal to the (1 1 0) crystallographic pole have been investigated voltammetrically in 0.1 M HClO(4) and 0.1 M H(2)SO(4) solutions. Changes in the voltammetric profile with the step density suggest the existence of two types of surface sites, that has been ascribed to linear and bidimensional domains. This result indicates the existence of important restructuring processes that separate the real surface distribution from the nominal one. The electronic properties of the surfaces have been characterized with the CO charge displacement method and the potential of zero total charge has been calculated as a function of the step density. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Ti-Mo alloys from 4 to 20 Mo wt.% were arc-melted. Their compositions and surfaces were analyzed by EDX, XRF and SEM. The Mo mapping shows a homogeneous distribution for all alloys. The XRD analysis showed that the crystal structure of the alloys is sensitive to the Mo concentration; a mixture of the hexagonal alpha' and orthorhombic alpha '' phases was observed for the Ti-4Mo alloy, and the alpha '' phase is observed almost exclusively when the concentration of Mo added to the Ti reaches 6%. A significant retention of the beta phase is observed for the alloy containing 10% Mo, while at higher Mo concentrations (15% and 20%), retention of phase beta is only verified. Preliminary electrochemical studies have indicated a valve-metal behavior and good corrosion resistance in aerated Ringer solution for all alloys. (c) 2006 Published by Elsevier B.V.
Resumo:
With suitable thermal treatments, a nearly stoichiometric cordierite glass (2 MgO.2 Al2O3. 5 SiO2) shows a variety of crystal morphologies on the external surfaces: lozenges, regular and elongated hexagons, spherical and square shaped particles. We initially identified these morphologies through optical and scanning electron microscopy techniques. Their structural features were distinguished by x-ray diffraction patterns, infrared and Roman microprobe spectra. We concluded that there are close structural similarities for: lozenges and glass matrix; regular and elongated hexagons; spherical and square particles. The ordering degree increases in the following sequence: glass matrix, lozenges, hexagons, squares and spheres. The lozenge crystals are known as X-phase. The hexagons belong to the μ-cordierite (high quartz solid solution) metastable phase and the squares and spheres to the α-cordierite stable phase.
Resumo:
Sugar is widely consumed worldwide and Brazil is the largest producer, consumer, and exporter of this product. To guarantee proper development and productivity of sugar cane crops, it is necessary to apply large quantities of agrochemicals, especially herbicides and pesticides. The herbicide tebuthiuron (TBH) prevents pre- and post-emergence of infesting weed in sugarcane cultures. Considering that it is important to ensure food safety for the population, this paper proposes a reliable method to analyse TBH in sugar matrixes (brown and crystal) using square wave voltammetry (SWV) and differential pulse voltammetry (DPV) at bare glassy carbon electrode and investigate the electrochemical behavior of this herbicide by cyclic voltammetry (CV). Our results suggest that TBH or the product of its reaction with a supporting electrolyte is oxidized through irreversible transfer of one electron between the analyte and the working electrode, at a potential close to +1.16 V vs. Ag |AgClsat in 0.10 mol L-1 KOH as supporting electrolyte solution. Both DPV and SWV are satisfactory for the quantitative analysis of the analyte. DPV is more sensitive and selective, with detection limits of 0.902, 0.815 and 0.578 mg kg-1, and quantification limits of 0.009, 0.010 and 0.008 mg kg-1 in the absence of the matrix and in the presence of crystal and brown sugar matrix, respectively. Repeatability lay between 0.53 and 13.8%, precision ranged between 4.14 and 15.0%, and recovery remained between 84.2 and 113% in the case of DPV conducted in the absence of matrix and in the presence of the crystal sugar matrix, respectively.
Resumo:
The following varieties of natural quartz, as the blue, the green, the red, the pink, the black, the sulphurous and the milky quartz, have been investigated concerning their thermoluminescence properties. For comparison sake natural colorless alpha quartz has been include. Since X-rays diffraction analysis has shown that all of them have the same crystal structure as the alpha quartz, it is expected that no great change in the TL property should be found, however, that was not the case. The TL peaks at 110, 175, 220, 325 and 375 degrees C observed in the alpha quartz are not found in all the varieties of quartz, for instance, the sulphurous quartz presented only 110 degrees and 245 degrees peaks, the pink one presented just 110, 220 and 375 degrees C peaks and so on. In respect to TL response as function of gamma ray dose a quite varied behavior has been observed and discussed. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A series of dicyanobiphenyl-cyclophanes 1-6 with various pi-backbone conformations and characteristic n-type semiconductor properties is presented. Their synthesis, optical, structural, electrochemical, spectroelectrochemical, and packing properties are investigated. The X-ray crystal structures of all n-type rods allow the systematic correlation of structural features with physical properties. In addition, the results are supported by quantum mechanical calculations based on density functional theory. A two-step reduction process is observed for all n-type rods, in which the first step is reversible. The potential gap between the reduction processes depends linearly on the cos(2) value of the torsion angle phi between the pi-systems. Similarly, optical absorption spectroscopy shows that the vertical excitation energy of the conjugation band correlates with the cos(2) value of the torsion angle phi. These correlations demonstrate that the fixed intramolecular torsion angle phi is the dominant factor determining the extent of electron delocalization in these model compounds, and that the angle phi measured in the solid-state structure is a good proxy for the molecular conformation in solution. Spectroelectrochemical investigations demonstrate that conformational rigidity is maintained even in the radical anion form. In particular, the absorption bands corresponding to the SOMO-LUMO+i transitions are shifted bathochromically, whereas the absorption bands corresponding to the HOMO-SOMO transition are shifted hypsochromically with increasing torsion angle phi.
Resumo:
The effect of anions on the redox behavior and structure of 11-ferrocenyl-1-undecanethiol (FcC11) monolayers (SAM) on Au(1 1 1) single crystal and Au(1 1 1-25 nm) thin film electrodes was investigated in 0.1 M solutions of HPF6, HClO4, HBF4, HNO3, and H2SO4 by cyclic voltammetry (CV) and in situ surface-enhanced infrared reflection-absorption spectroscopy (SEIRAS). We demonstrate that the FcC11 redox peaks shift toward positive potentials and broaden with increasing hydrophilicity of the anions. In situ surface-enhanced IR-spectroscopy (SEIRAS) provided direct access for the incorporation of anions into the oxidized adlayer. The coadsorption of anions is accompanied by the penetration of water molecules. The latter effect is particularly pronounced in aqueous HNO3 and H2SO4 electrolytes. The adlayer permeability increases with increasing hydrophilicity of the anions. We also found that even the neutral (reduced) FcC11 SAM is permeable for water molecules. Based on the property of interfacial water to reorient upon charge inversion, we propose a spectroscopic approach for estimating the potential of zero total charge of the FcC11-modified Au(1 1 1) electrodes in aqueous electrolytes.
Resumo:
Cathodoluminescence (CL) studies have previously shown that some secondary fluid inclusions in luminescent quartz are surrounded by dark, non-luminescent patches, resulting from fracture-sealing by late, trace-element-poor quartz. This finding has led to the tacit generalization that all dark CL patches indicate influx of low temperature, late-stage fluids. In this study we have examined natural and synthetic hydrothermal quartz crystals using CL imaging supplemented by in-situ elemental analysis. The results lead us to propose that all natural, liquid-water-bearing inclusions in quartz, whether trapped on former crystal growth surfaces (i.e., of primary origin) or in healed fractures (i.e., of pseudosecondary or secondary origin), are surrounded by three-dimensional, non-luminescent patches. Cross-cutting relations show that the patches form after entrapment of the fluid inclusions and therefore they are not diagnostic of the timing of fluid entrapment. Instead, the dark patches reveal the mechanism by which fluid inclusions spontaneously approach morphological equilibrium and purify their host quartz over geological time. Fluid inclusions that contain solvent water perpetually dissolve and reprecipitate their walls, gradually adopting low-energy euhedral and equant shapes. Defects in the host quartz constitute solubility gradients that drive physical migration of the inclusions over distances of tens of μm (commonly) up to several mm (rarely). Inclusions thus sequester from their walls any trace elements (e.g., Li, Al, Na, Ti) present in excess of equilibrium concentrations, thereby chemically purifying their host crystals in a process analogous to industrial zone refining. Non-luminescent patches of quartz are left in their wake. Fluid inclusions that contain no liquid water as solvent (e.g., inclusions of low-density H2O vapor or other non-aqueous volatiles) do not undergo this process and therefore do not migrate, do not modify their shapes with time, and are not associated with dark-CL zone-refined patches. This new understanding has implications for the interpretation of solids within fluid inclusions (e.g., Ti- and Al-minerals) and for the elemental analysis of hydrothermal and metamorphic quartz and its fluid inclusions by microbeam methods such as LA-ICPMS and SIMS. As Ti is a common trace element in quartz, its sequestration by fluid inclusions and its depletion in zone-refined patches impacts on applications of the Ti-in-quartz geothermometer.
Resumo:
Not all boninites are glassy lavas. Those of Hole 458 in the Mariana fore-arc region are submarine pillow lavas and more massive flows in which glass occurs only in quenched margins. Pillow and flow interiors have abundant Plagioclase spherulites, microlites, or even larger crystals but can be recognized as boninites by (1) occurrence of bronzite, (2) presence of augite-bronzite microphenocryst intergrowths, and (3) reversal of the usual basaltic groundmass crystallization sequence of plagioclase-augite to augite-plagioclase. The latter is accentuated by sharply contrasting augite and Plagioclase crystal morphologies near pillow margins, a consequence of rapid cooling rates. This crystallization sequence appears to be a consequence of boninites having higher SiO2 and Mg/Mg + Fe than basalts but lower CaO/Al2O3. Microprobe data are used to illustrate the effects of rapid cooling on the compositions of pyroxene and microphenocrysts in a glassy boninite sample and to estimate temperatures of crystallization of coexisting bronzite and augite. A range from 1320°C to 1200°C is calculated with an average of 1250°C. This is higher by 120°-230° than the known range for western Pacific arc tholeiites and by over 300° than for calc-alkalic andesites. Boninites of Hole 458 lack olivine and clinoenstatite but are otherwise chemically and petrographically similar to boninites that have these minerals. In order to distinguish the two types, the Hole 458 lavas are here termed boninites and the others are termed olivine boninites. Arc tholeiite pillow lavas from Holes 458 and 459B are briefly described and their textures compared to fractionated, moderately iron-enriched, abyssal tholeiites. Massive tholeiite flows contain striking quartz-alkali feldspar micrographic intergrowths with coarsely spherulitic textures resulting from in situ magmatic differentiation. Such intergrowths are rare in massive abyssal tholeiites cored by DSDP and probably occur here because arc tholeiites have higher normative quartz at comparable degrees of iron enrichment - a result of higher oxygen fugacities and earlier separation of titanomagnetite - than abyssal tholeiites.
Resumo:
The damage induced on quartz (c-SiO2) by heavy ions (F, O, Br) at MeV energies, where electronic stopping is dominant, has been investigated by RBS/C and optical methods. The two techniques indicate the formation of amorphous layers with an isotropic refractive index (n = 1.475) at fluences around 1014 cm−2 that are associated to electronic mechanisms. The kinetics of the process can be described as the superposition of linear (possibly initial Poisson curve) and sigmoidal (Avrami-type) contributions. The coexistence of the two kinetic regimes may be associated to the differential roles of the amorphous track cores and preamorphous halos. By using ions and energies whose maximum stopping power lies inside the crystal (O at 13 MeV, F at 15 MeV and F at 30 MeV) buried amorphous layer are formed and optical waveguides at the sample surface have been generated.
Resumo:
This PhD work is focused on liquid crystal based tunable phase devices with special emphasis on their design and manufacturing. In the course of the work a number of new manufacturing technologies have been implemented in the UPM clean room facilities, leading to an important improvement in the range of devices being manufactured in the laboratory. Furthermore, a number of novel phase devices have been developed, all of them including novel electrodes, and/or alignment layers. The most important manufacturing progress has been the introduction of reactive ion etching as a tool for achieving high resolution photolithography on indium-tin-oxide (ITO) coated glass and quartz substrates. Another important manufacturing result is the successful elaboration of a binding protocol of anisotropic conduction adhesives. These have been employed in high density interconnections between ITO-glass and flexible printed circuits. Regarding material characterization, the comparative study of nonstoichiometric silicon oxide (SiOx) and silica (SiO2) inorganic alignment layers, as well as the relationship between surface layer deposition, layer morphology and liquid crystal electrooptical response must be highlighted, together with the characterization of the degradation of liquid crystal devices in simulated space mission environment. A wide variety of phase devices have been developed, with special emphasis on beam steerers. One of these was developed within the framework of an ESA project, and consisted of a high density reconfigurable 1D blaze grating, with a spatial separation of the controlling microelectronics and the active, radiation exposed, area. The developed devices confirmed the assumption that liquid crystal devices with such a separation of components, are radiation hard, and can be designed to be both vibration and temperature sturdy. In parallel to the above, an evenly variable analog beam steering device was designed, manufactured and characterized, providing a narrow cone diffraction free beam steering. This steering device is characterized by a very limited number of electrodes necessary for the redirection of a light beam. As few as 4 different voltage levels were needed in order to redirect a light beam. Finally at the Wojskowa Akademia Techniczna (Military University of Technology) in Warsaw, Poland, a wedged analog tunable beam steering device was designed, manufactured and characterized. This beam steerer, like the former one, was designed to resist the harsh conditions both in space and in the context of the shuttle launch. Apart from the beam steering devices, reconfigurable vortices and modal lens devices have been manufactured and characterized. In summary, during this work a large number of liquid crystal devices and liquid crystal device manufacturing technologies have been developed. Besides their relevance in scientific publications and technical achievements, most of these new devices have demonstrated their usefulness in the actual work of the research group where this PhD has been completed. El presente trabajo de Tesis se ha centrado en el diseño, fabricación y caracterización de nuevos dispositivos de fase basados en cristal líquido. Actualmente se están desarrollando dispositivos basados en cristal líquido para aplicaciones diferentes a su uso habitual como displays. Poseen la ventaja de que los dispositivos pueden ser controlados por bajas tensiones y no necesitan elementos mecánicos para su funcionamiento. La fabricación de todos los dispositivos del presente trabajo se ha realizado en la cámara limpia del grupo. La cámara limpia ha sido diseñada por el grupo de investigación, es de dimensiones reducidas pero muy versátil. Está dividida en distintas áreas de trabajo dependiendo del tipo de proceso que se lleva a cabo. La cámara limpia está completamente cubierta de un material libre de polvo. Todas las entradas de suministro de gas y agua están selladas. El aire filtrado es constantemente bombeado dentro de la zona limpia, a fin de crear una sobrepresión evitando así la entrada de aire sin filtrar. Las personas que trabajan en esta zona siempre deben de estar protegidas con un traje especial. Se utilizan trajes especiales que constan de: mono, máscara, guantes de látex, gorro, patucos y gafas de protección UV, cuando sea necesario. Para introducir material dentro de la cámara limpia se debe limpiar con alcohol y paños especiales y posteriormente secarlos con nitrógeno a presión. La fabricación debe seguir estrictamente unos pasos determinados, que pueden cambiar dependiendo de los requerimientos de cada dispositivo. Por ello, la fabricación de dispositivos requiere la formulación de varios protocolos de fabricación. Estos protocolos deben ser estrictamente respetados a fin de obtener repetitividad en los experimentos, lo que lleva siempre asociado un proceso de fabricación fiable. Una célula de cristal líquido está compuesta (de forma general) por dos vidrios ensamblados (sándwich) y colocados a una distancia determinada. Los vidrios se han sometido a una serie de procesos para acondicionar las superficies internas. La célula se llena con cristal líquido. De forma resumida, el proceso de fabricación general es el siguiente: inicialmente, se cortan los vidrios (cuya cara interna es conductora) y se limpian. Después se imprimen las pistas sobre el vidrio formando los píxeles. Estas pistas conductoras provienen del vidrio con la capa conductora de ITO (óxido de indio y estaño). Esto se hace a través de un proceso de fotolitografía con una resina fotosensible, y un desarrollo y ataque posterior del ITO sin protección. Más tarde, las caras internas de los vidrios se acondicionan depositando una capa, que puede ser orgánica o inorgánica (un polímero o un óxido). Esta etapa es crucial para el funcionamiento del dispositivo: induce la orientación de las moléculas de cristal líquido. Una vez que las superficies están acondicionadas, se depositan espaciadores en las mismas: son pequeñas esferas o cilindros de tamaño calibrado (pocos micrómetros) para garantizar un espesor homogéneo del dispositivo. Después en uno de los sustratos se deposita un adhesivo (gasket). A continuación, los sustratos se ensamblan teniendo en cuenta que el gasket debe dejar una boca libre para que el cristal líquido se introduzca posteriormente dentro de la célula. El llenado de la célula se realiza en una cámara de vacío y después la boca se sella. Por último, la conexión de los cables a la célula y el montaje de los polarizadores se realizan fuera de la sala limpia (Figura 1). Dependiendo de la aplicación, el cristal líquido empleado y los demás componentes de la célula tendrán unas características particulares. Para el diseño de los dispositivos de este trabajo se ha realizado un estudio de superficies inorgánicas de alineamiento del cristal líquido, que será de gran importancia para la preparación de los dispositivos de fase, dependiendo de las condiciones ambientales en las que vayan a trabajar. Los materiales inorgánicos que se han estudiado han sido en este caso SiOx y SiO2. El estudio ha comprendido tanto los factores de preparación influyentes en el alineamiento, el comportamiento del cristal líquido al variar estos factores y un estudio de la morfología de las superficies obtenidas.